
For Peer Review
An Adaptive Motion Estimation Algorithm for Embedded Mobile Vehicle 

Surveillance Systems 

Journal: IEEE Transactions on Vehicular Technology 

Manuscript ID: VT-2008-00356 

Suggested Category: Regular Paper 

Date Submitted by the 
Author:

23-Apr-2008 

Complete List of Authors: Wu, Bing-Fei; National Chiao Tung University, Department of 
Electrical and Control Engineering 
Peng, Hsin-Yuan; National Chiao Tung University, Department of 
Electrical and Control Engineering 

Keywords: Image coding, Image motion analysis, Communication systems 

IEEE Transactions on Vehicular Technology



For Peer Review

 

 1

An Adaptive Motion Estimation Algorithm for 

Embedded Mobile Vehicle Surveillance Systems 

Bing-Fei Wu, and Hsin-Yuan Peng* 

Department of Electrical and Control Engineering, National Chiao Tung University, 

1001, Ta Hsueh Road, Hsinchu, 300, Taiwan, R. O. C. 

Abstract—This manuscript addresses the development of an adaptive motion estimation algorithm 

(AMEA) especially for the vehicle surveillance videos. In the real environments, the videos contain 

several problems, such as the different weathers, and the changing of the light sources, and these will 

lead to the heavy computation and the bad video quality. On one hand, in order to overcome the 

drawbacks, AMEA applies an easy histogram extension algorithm (HEA) to pre-process the images to 

keep the images stable and increase the estimation accuracy greatly. On the other hand, the purpose 

for the monitoring information is to provide clear faces of the intruders, so the images are separated 

into two parts, in and out of the region of interest (ROI). In ROI, AMEA can maintain the coding 

quality using the least numbers of manipulations, and meantime it can also enormously reduce the 

computational complexity for the blocks out of ROI. Moreover, AMEA is integrated into a low-power 

embedded mobile vehicle surveillance system (EMVSS), which can transfer the real-time videos to 

users’ mobile phones through the 3.5G/3G network, so that the users can know the situations of the 

vehicles anytime and anywhere. EMVSS has been successfully tested in the real road environment of 

Taiwan. 

Index Terms—H.264, motion estimation, embedded system, surveillance video. 
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I. INTRODUCTION 

The most complex part of popular video compression standards, including MPEG-1/2/4 [1]-[3] and 

H.261/3/4 [4]-[6], is motion estimation (ME). The goal of ME is to remove the temporal redundancies 

existing in adjacent frames, and the block-matching algorithm is used as a method for most of the video 

coding systems. It is used to find a block which is most similar to a current block within a pre-defined search 

area in a reference frame, and it dominates the encoded image quality, the compression ratio, and the 

computation time. The most straight forward method, known as the full search block matching algorithm 

(FSBMA) of obtaining motion vectors (MVs), is to search all possible locations within a given area. Since 

FSBMA uses an exhaustive search to locate the minimum block-distortion measure (BDM) for each 

candidate block, it provide optimal performance but at the expense of very high computation. Usually, 

FSBMA spends about 70% of the total encoding time and this is the reason why FSBMA is not used in 

real-time systems. Indeed, ME is the major bottleneck in video coding applications, hence the need for faster 

algorithms. 

To reduce the number of search steps of FSBMA in order to increase the overall speed is essential. The fast 

FSBMA, including the 2-D logarithmic search (2DLOG) [7], the three-step search (TSS) [8], the new 

three-step search (NTSS) [9], the advanced center biased search [10], the four-step search (4SS) [11], the 

cross-search [12], the prediction search [13], the successive elimination algorithm (SEA) [14]-[16], partial 

distortion elimination (PDE) [17], the winner-update algorithm [18], the advanced diamond search algorithm 

(DSA) [19], and the hexagon-based search (HEXBS) [20], [21], are proposed to reduce the computational 

heavy load of FSBMA while maintaining its quality. DSA has achieved a significant speed gain by 

considering diamond-shaped search patterns instead of the conventional square ones with a view to 

approximate the optimal (but unrealizable) circular shape as closely as possible. Recently, HEXBS algorithm 

has surpassed the speed of DSA by using hexagon-shaped search patterns. Moreover, in order to refine the 

accuracy of DSA, several new algorithms, such as motion vector field adaptive search technique (MVFAST) 

[22], predictive MVFAST (PMVFAST) [23], and enhanced predictive zonal search (EPZS) are proposed 

Page 2 of 45IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 3

[24]. MVFAST improve DSA in both terms of visual quality and speed up by initially considering a small set 

of predictors. Unlike DSA where only a large moving diamond pattern was considered, MVFAST also 

introduced a smaller moving diamond. PMVFAST uses basically the same architecture and patterns as 

MVFAST does, but a significant difference of PMVFAST compared to MVFAST is the way the small versus 

the large diamond is selected. Dissimilar to MVFAST where motion was characterized as low, medium, or 

high by considering the largest motion vector candidate, in PMVFAST a different selection strategy, which 

can improve the overall speed of the algorithm by using the large diamond less often, is used. Furthermore, 

EPZS that improves upon PMVFAST by considering several other additional predictors in the generalized 

predictor selection phase of PMVFAST. EPZS also selects a more robust and efficient adaptive threshold 

calculation where as, due to the high efficiency of prediction stage, the pattern of the search can be 

considerably simplified. In addition, an efficient hierarchical motion estimation algorithm adopting the 

averaging filter to downsample the image in order to reduce the computational complexity greatly while 

maintaining the good coding quality are also proposed, but it is a hardware architecture, which can not gain 

the same performance using the software implementation [25]. 

All of these fast algorithms [7]-[25] assume that either the error surface is unimodal over the entire search 

area (i.e., there is only one global minimum) or MV is center-biased. These hypotheses essentially require 

that either BDM increases monotonically as the search point moves away from the global minimum position 

or MV exists in a small range. However, they are generally invalid for many real video sequences because the 

highly nonstationary characteristics of the signals. Moreover, despite their respective differences, these fast 

search algorithms all have one common feature that none of them has been designed to provide flexibility in 

controlling the performance in terms of predicted picture quality and processing time. Golam et al. propose a 

fully adaptive distance-dependent thresholding search (FADTS) [26], which can adjust the required 

threshold control parameter via an adaptive process which uses the information from previous frames to 

achieve specified image quality and manipulation speed. However, it needs to be modified when dealing with 

the vehicle surveillance videos. 
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As illustrated in Fig. 1, the images of the vehicle surveillance videos have some key features. First, the 

important information, like the faces of the drivers and the judgments of the existence of the intruders, 

usually locates in a specific area, which is the region of interest (ROI), and other parts of the image, out of 

ROI, often do not contain significant data. The coding results in ROI cam be as clear as possible in order to 

provide evidences for the police department, and the complexity also should be kept as low as it can. Second, 

since the vehicles are frequently in the moving state, and the surrounding environments keep changing, the 

parameters of the images, such as brightness and the light source, are varied case by case. The gray level of 

the pixels will be influenced and the accuracy of the MVs will be forced to be lower due to the undesired 

environment effects.  Third, the postures of the motormen do not move wildly when they are driving. 

Therefore, the ME framework for the specific application should be modified to increase the performance in 

terms of the coding speed and the image quality. Moreover, when the recorders in cars encode the monitoring 

videos with high quality, the users should be able to browse them as convenient as possible. With the 

popularity of mobile communication in recent years, people always have a mobile phone or a PDA. When the 

systems can transmit the vehicle security information to the owners’ mobile devices, more properties can be 

protected by real-time alarm messages. Moreover, if the guard system of the vehicle can capture the images 

which are in or out of the vehicle anywhere, the vehicle owners can handle the situation of the vehicle more 

precisely. A preliminary version of this kind of system has been presented in [27]. 

The main contributions of this paper are to develop an adaptive ME algorithm (AMEA) especially for the 

surveillance videos in vehicles, and to realize it with an embedded mobile vehicle surveillance system 

(EMVSS), which has been successfully implemented and tested with the real cars and roads. In ROI, AMEA 

can do its best to maintain the encoding quality, using the least number of operations, and it can adaptively 

change the search procedures to overcome the big motions and the changes of the environments. Therefore, a 

histogram extension algorithm (HEA) is adopted to pre-process the blocks in order to overcome the lighting 

effects. Furthermore, since the MVs of these out-of-ROI blocks are usually not large, and the importances of 

them are not high, AMEA can manipulate them as fast as possible by optimizing the search procedure 
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according to the MV characteristic. The experimental results show that AMEA can even provide better 

quality than FSBMA does when the video is seriously influenced by the environmental change. Moreover, in 

the system level design, EMVSS has greatly enhanced the functionalities of those in [27]. The 3.5G/3G 

network can provide much higher bandwidth than it of GPRS, and H.264 video encoding has better 

compression ratio than JPEG. Hence, EMVSS can offer a real-time videos inside the vehicles to the users at 

anytime and anywhere. 

The rest of this paper is organized as follows. Section II analyzes the real processing problems for the 

vehicle surveillance videos. Section III presents the AMEA architecture, and Section IV illustrates the 

integration of the AMEA with the EMVSS. Section V depicts the results of implementation and Section VI 

draws conclusions. 

 

II. THE ANALYSES OF THE VEHICLE SURVEILLANCE VIDEOS 

The special features of the vehicle surveillance videos will be addressed in this Section. One is the lighting 

effects, and the other is the characteristics of MVs in and out of ROI. As shown in Fig. 1, the camera is 

installed in the front-right corner of the vehicle since not only the face of the driver but also the scene outside 

the window, which can help the police to recognize the exact location, is important. The detail analyses are 

described as below. 

 

2.1. Lighting effects 

Lighting conditions are one of the most important problems to be solved in real tests. As shown in Fig. 2, 

the vehicle is passing through a long tunnel, which has rectangular windows on one side, so the sunlight will 

influence the brightness of the images periodically. When passing the middle of the window, outer lights 

directly illuminate the driver, increasing the pixel levels quickly. Once the car has left, the pixel values 

decline immediately. Fig. 3(a) and Fig. 3(b) illustrate the brightest and the darkest images, respectively, and 
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the time difference between them is only 360 milliseconds. In these two pictures, it can be observed that the 

driver’s posture only changes a little, but the pixel values of them are quite different. Another method to 

exam the effects is to compare the mean, kM , defined in (1), of the kth frame in the whole video,  

( )∑∑
−

=

−

=×
=

1
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j
kk jiI

HW
M ,                                                                       (1) 

where W, H are the width and the height of the image ( )⋅kI , and ( )jiIk ,  represents the value at position ( )ji,  

of the kth frame, respectively. The mean of the each frame in this video (V1) is depicted in Fig. 4, and the 

lighting effects can be easily observed. Fig. 5(a) and Fig. 5(b) also shows the most luminous and the 

obscurest frames of another video (V2), respectively, and the position of the vehicle is closer to the windows 

than it of V1. Fig. 6 depicts the average value of all pixels of each frame in V2, and it is higher than it of V1 

due to the location of the automobile. The lighting effect appears to be smaller than it of V1, but the trend of 

the diagram is almost the same. The serious problem exists and needs to be solved. 

 

2.2.  The coding performance degradation due to the lighting effects 

As described in Section I, when using the block-matching algorithm, MVs are obtained by locating the 

minimum BDM, which is usually measured by the sum of absolute difference (SAD), for candidate blocks. 

However, the lighting effect will cause the pixel values to change greatly even though the motion of driver is 

small. Thus, the MVs manipulated by the minimum SAD will be wrong and the quality will be decreased. Fig. 

7 and Fig. 8 show the correlations between the adjacent frames of V1 and V2, and the results are highly 

related to Fig.4 and Fig. 6, respectively. The quality will be increased when higher correlation exists between 

the successive images. The correlation coefficient, ρ , is defined as 
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where kM  and 1+kM  are the means of the image pairs, ( )⋅kI  and ( )⋅+1kI , and ( )jiIk ,  represents the value at 

position ( )ji,  of the kth frame, respectively. 

If the low correlation exists in a neighboring frame pair, it means that the distortion between them is large, 

and will lead to poor quality and compression ration. The peak signal-to-noise ratio (PSNR) is used for the 

measurement of performance, and it is defined as 

( ) ( )[ ]∑ ∑−

=

−

=
−

×

=
1

0

1

0

2

2

10

,ˆ,1
255log10

H

i

W

j kk jiIjiI
HW

PSNR ,                                       (3) 

where W, H are the width and the height of the image ( )⋅kI , and ( )k̂I ⋅ is the kth motion compensated image. 

Table I illustrates the PSNR of these videos, where V0 is a surveillance video when driving on a normal road 

without the lighting effects. The ME method is FSBMA, the block size is 1616×  and the search area is [-16, 

+15]. These videos, V0, V1, and V2, are all in CIF format, and a total of 450 frames. Fig. 9(a) and Fig. 9(b) 

are the mean and the correlation of V0, respectively. The diagram shows that a normal motorist has quite 

small motion during driving and PSNR is much higher than those of V1 and V2. However, V0, V1, and V2 

are filmed at the same angle, with the same driver, in the same vehicle, and on the same day with only five 

minutes time interval each, and the behavior of the same person will not change enormously in a short time. 

Therefore, from Fig. 4 to Fig. 9 and Table I, the lighting effect indeed results the bad estimation performance, 

and this problem needs to be solved. 

 

2.3. The MV characteristics 

In Section 2.2, the hypothesis of the drivers’ behavior is made, and some statistical results will support the 

assumption. First of all, because the camera of the vehicle surveillance system is firmly fixed in the car, and 

the capture area will be also bounded, ROI can be pre-defined. ROI should cover almost the moving region of 

the driver’s head to recognize the intruder’s face, so the ROI like Fig. 1 is set artificially. Fig. 10 shows the 

manipulated MVs, which is drawn in the shape of arrows, on the reference frame and the area besieged by the 
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green dotted line is ROI. Fig. 11(a) and Fig. 11(b) depict the probability of the magnitude of MVs in and out 

of ROI for all frames of V0, respectively. It can be observed that there exists high chance of short MVs when 

its corresponding block is out of ROI, so the ME algorithm for these blocks can be modified based on the 

results. On the other hand, the drivers’ heads will move to all directions in order to check different angles, 

and their faces will turn left and right to see the side view. Therefore, BDM in ROI will be larger than it out of 

ROI, and hence the MVs in ROI will have high probability to be longer. To maintain the coding quality of the 

blocks in ROI, which will have much more situations than those out of ROI, is essential since the main goal 

of the surveillance videos is to provide clear evidences. 

 

III. ADAPTIVE MOTION ESTIMATION ALGORITHM (AMEA) 

AMEA can be divided into three parts. One is the histogram extension algorithm (HEA) for pre-processing 

the image, one is the adaptive ME framework for the blocks in ROI to uphold the image quality, and the other 

is the simplified MV search procedure for those out of ROI. The complete algorithm is described as below. 

 

3.1. Histogram extension algorithm (HEA) 

The lighting effect is a serious problem for the image processing for vehicular technology. Bergasa et al. 

propose a real-time system for monitoring driver vigilance [28], and they are facing the same issue. In order 

to minimize the interference from light sources beyond the IR light emitted by the LEDs in [28], a narrow 

bandpass filter centered at the LED wavelength has been attached between the CCD and the lens. However, 

the solution is not suitable for the video encoding system since the types of input devices are quite different. 

For minimizing the BDM due to the numerous reasons except from the motion, the brightness preserving 

algorithm should be adopted. Several methods, including histogram equalization [29], Brightness preserving 

bi-histogram equalization [30], equal area dualistic sub-image histogram equalization [31], minimum mean 

brightness error bi-histogram equalization [32], and brightness preserving histogram equalization with 
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maximum entropy [33] are proposed to reduce the artifacts. These frameworks are very powerful to 

overcome the different light sources at any angle, and are quite complex. Since EMVSS is put in the real 

vehicle and works whenever the car is started, it must be a low-power embedded system. Therefore, a simple 

HEA is derived to fit the request and release more time for CPU to processing the H.264 video compression. 

HEA pre-processing is addressed to adjust the images which are under different luminance to the ones with 

a similar luminance condition. A color image can be separated into three dimensions, Y, U, and V, and ME 

only calculates the MVs for Y plane. Therefore, only the histogram of the Y component needs to extended, 

and the linear normalization with mean shift (LNMS) is applied to modify the images of different conditions 

to a similar one. 

As illustrated in Fig. 12(a) and Fig. 12(b), ix  and ix′  are the intensity of a pixel value of the gray-level 

image, ( )⋅kI , before and after the HEA manipulation, where i is from 0 to 255, is  is the total amounts of the 

ix th level and a, b, c, d, e, and f are random numbers with the relationship of fedcba <<<<< , 

respectively. Fig. 12(a) and Fig. 12(b) are the histograms of the input frame before and after the 

pre-processing. Suppose the mean of Fig. 12(a), kM , which is calculated by (1), is located on 
kMx  with 

kMs  

pixels, and HEA will shift the value of all these 
kMs  points to 128. In another word, 

kMx  is moved to 128x , 

and the remaining pixels will be linearly shifted to the two sides of 128x . Two transform parameters, α  and 

β , are used to move the ix  to ix′ , and they are defined as  

kMx
128

=α ,                                                                           (4) 

and 

kMx−
=

255
128β .                                                                      (5) 

The transfer function from ix  to ix′  is defined as 
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⎪
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Mix
iMxx

Mixx

,128
255,

0,
β
α

.                                                      (6) 

By (6), kM  will be shifted to around 128, ix , kMi <≤0 , will be modified as ix′ , 1280 <≤ i , and ix , 

255≤< iM k , will be substituted as ix′ , 255128 ≤< i . Therefore, the average value of each input image, 

which can be influence by the light source, will be around 128, and the lighting effect problem can be solved. 

Moreover, the MV search procedure can avoid the wrong minimum BDM, and can reduce the search points 

to increase the speed. 

 

3.2. AMEA in ROI 

In performance-management ME, given a target prediction image quality in terms of average SAD per 

pixel, the motion search algorithm tries to achieve it using as few search checking points as possible. 

Performance-management ME also assumes real time constraint, which allows very limited number of passes 

per macroblock (MB). Without such a constraint, trivial trial and error technique with a very high number of 

passes would suffice the adaptation. Without any loss of generality, this paper assumes the strictest constraint 

where only one ME pass is performed per MB.  

 

A. AMEA framework 

The concept of AMEA is not linked to any specific search pattern shape. In the wake of improved speed 

gain by nonsquare search patterns, AMEA has been implemented using search diamonds, τSD , as shown in 

Fig. 13 where the number of checking points in τSD  is 

⎩
⎨
⎧

=
=

d2 ,...,2 ,1,4
0,1

ττ
τ

,                                                                     (7) 
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where the search range of AMEA is set as [-d, d-1] and τSD  represents the MV of length in the range of 

[ ]ττ  ,2 . Some of the checking points in the search diamond fall outside the search windows that are 

obviously ignored.  

Like all block-base ME search techniques, AMEA starts at the center of the search space. The search then 

progresses outwards by using τSD  in order while monitoring the current minimum SAD. A parametric 

thresholding function, r, defined as  

( ) ττ ×= mm ThThr  , ,                                                                       (8) 

is used to determine the various thresholds to be used in the search involving each τSD  where Thm is an 

adaptive index for r of the mth frame (the adaptation of Thm and the definition of m will be addressed in the 

next paragraph), and it is set at the start of each search and acts as a control parameter. After searching each 

τSD , the current minimum SAD is compared against the threshold value, ( )mThr  ,τ , of that specific search 

procedure in τSD  and the search is terminated if this SAD value is not higher than that threshold value. 

 

B. AMEA closed-loop adaptation model 

AMEA works sequentially on the frames of an input video sequence. Although the consecutive frames are 

considered to be highly correlated, the input video signal can be considered time variable or nonstationary 

from the adaptation point of view. Therefore, a closed-loop adaptation model, as shown in Fig. 14, is 

presented for AMEA, and it has the following four modules.  

 Adaptation of  Thm: Since the adjacent frames have high correlations, the number of updating the Thm 

can be reduced. In other words, the mTh  will maintain the same value during L frames, and the 

iteration index m are changing from 1, 1+L to ( )⎣ ⎦( )LLN 1−  for a video sequence with N frames. The 

value of Thm+1 for the next iteration are defined as 

[ ] [ ]( )mm
mm yefThTh  ,1 +=+ ,                                                             (9) 
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            where [ ]me  and [ ]my  are the average value of each ke  and ky , which are the error signal and the 

average SAD output of the kth frame, in a total of L frames, respectively. 

 HEA: This module will manipulate the histogram of the input image, and then shift the histogram 

using HEA, which is described in Section 3.1. The results of HEA will directly replace the original 

frame to reduce the memory usage. Two blocks of the memory, which are acted as a ping-pong buffer, 

Mem1, and Mem2, are allocated for AMEA. First, in the intra frame mode, the input images are always 

stored in Mem1, and the reconstructed frame will be saved in Mem2. Second, in the inter frame mode, 

since the current frame will be the reference frame in the next encoding loop, these two parts will 

switching their status mutually until the next intra frame mode, and the scheme is illustrated in Fig. 15. 

 MV search procedure: This module calculates MVs using the AMEA framework, which is depicted in 

Section 3.2.A. The inputs of the module are the video frame pair ( ) ( )( )⋅⋅ +1 , kk II  and the control 

parameter mTh . The output of the model ky  is the predicted image quality in terms of average SAD 

and it is a monotonically increasing function. 

 Performance calculation: The performance of the adaptive system are estimated by calculating the 

error signal, ke , as 

koutk yTe −= ,                                                                          (10) 

where outT  is the target output, defined by the users. The value of ke  must be minimized as the 

adaptation process progresses. 

The performance of an adaptive system largely depends on how the function [ ] [ ]( )mm yef  ,  is defined. A few 

gradient search algorithms [34]–[38] exist that can adapt a system in searching for the optimal parameter to 

minimize error signal in (10). Among these, the least mean square (LMS) is the most well-known and popular 

method for its computational simplicity, robustness, and relatively easy implementation for online estimation 

of time-varying system parameters. A number of variants on the LMS theme have been conceived in order to 

ratify potential problems of the original LMS algorithm such as the need to guess the best value of step size, 
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slow convergence, and numerical instability. The normalized block LMS (NBLMS) [38] is considered as the 

best option for automatically adjusting the control parameter Th in order to achieve a target average SAD 

while coding a video sequence, where this sequence can be considered as a time varying nonstationary input 

to the adaptation system. Based on NBLMS, the threshold control parameter is updated as 

[ ]

[ ]

y

L

i

im

m
mm E

y
LueThTh
∑
−

=

+

+ +=

1

0
1

1

,                                                        (11) 

where u is the step size and [ ]( )∑ −

=
+=

1

0

2L

i
im

y yE . 

 

C. The initializations of the system parameters, Th0, L, and u 

In FADTS, the initialization of Th0 is chosen by estimating the first frame pair using a normal method, like 

FSBMA, DSA, or etc., and performs the MV search procedure again after Th0 is decided. The flow is 

achievable when the powerful PC is used to develop the algorithm when the processing framerate is higher 

than 60 frame per second. Thus, Th0 is appropriate for the video sequence since the frame pair for estimation 

is still the same. However, when the low computing power embedded system is chosen in order to save the 

consuming energy, Th0 will be calculated after a period of time, and it may not suitable for the current frame 

pair. Therefore, Th0 is directly set to 0, and it will be updated to increase the speed after the first L frames. The 

parameter L for AMEA is defined as 4 since the most serious lighting effects usually take 15 to 20 frames to 

change from the darkest image to the brightest one. Although lower L also provided similar performance in 

satisfying the targets, according to (9), it increases the overhead computational cost for the adaptation 

process. Conversely, higher L can be considered in order to reduce the overhead cost, though the block length 

of L in the NBLMS algorithm cannot be too high if it is assumed that the content of a video sequence may be 

unstable.  

With regard to the parameter u, Meghriche et al. [39] highlighted that there is no universal solution for 

finding the optimal value of u. In [38], the NLMS algorithm considers a step size range of (0<u<2) for signal 
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processing applications. The lower the value of u, the slower the convergence rate while a high step size can 

lead to system instability. The value of u=2 was defined for all the various standard video sequences tested, 

with no instability encountered for AMEA. 

 

3.3. AMEA out of ROI 

As mentioned in Section 2.3, the probability of the MVs whose lengths are less than 2 is much higher than 

the MVs with other magnitudes, so the ME algorithm can be greatly modified based on these results. 

Moreover, since the instruction memory of EMVSS is quite small and the computing power of the embedded 

processor is low, the software optimization for reducing the code size and increasing the performance is 

necessary. Therefore, the programs for manipulating the MVs out of ROI should re-use the functions in 

Section 3.2 well to achieve the needs. In the whole searching procedure, the most frequently used part is the 

diamond-shaped SAD comparator, hence it is written by assembly codes efficiently. No matter the incoming 

block is in or out of ROI, the high speed calculations are performed according to the system parameters. The 

main differences between AMEA in and out of ROI are the stop conditions and the search ranges. Because 

the importance of the blocks out of ROI is not as high as those in ROI, the maintenance of the estimation 

quality is no longer essential. Thus, the adaptations of the encoding parameters can be removed and the stop 

condition can be the same as DSA to decrease the complexity. Furthermore, based on the analysis results in 

Section 2.3, the search range of these out-of-ROI blocks can be shrunk to [-2, +2]. With these prior 

techniques, the computational overhead can be much lower. 

 

3.4. The complexity analysis of AMEA 

Consider an ME system with the following parameters: frame size = HW ⋅  pixels, MB size = MM ⋅ , and 

the search range is [-d, d-1]. The overall search procedure includes the HEA, and the different methods for 

the blocks in and out of ROI. Therefore, the complexity of AMEA can be defined as 
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outoutininHEAAMEA CMBCMBCC ×+×+= ,                                                   (12) 

where HEAC , inC , and outC  represent the complexity of HEA, the estimation algorithm for the in-ROI and the 

out-of-ROI blocks, and inMB  and outMB  are the number of the blocks in and out of ROI, respectively. HEAC  

contains the operations for calculating kMean , which requires HW ⋅  additions and one division, and shift 

each input pixel to a new value due to the corresponding formulas with one multiplication and one division. 

Therefore,  HEAC  can be defined as 

( ) ( ) ( ) ( ) 131 +⋅=⋅+⋅++⋅= HWHWHWHWCHEA .                                          (13) 

If there are Γ  numbers of operations required for the SAD calculation of one search checking point, then 

FSBMA needs ( )22dΓ  manipulations per MB using integer-pel accuracy. AMEA requires extra d operations 

to compare the current minimum SAD with the predefined threshold. Therefore, the maximum computational 

bound of inC  is 

( ) ddCin +Γ= 2max 2                                                                 (14) 

operations per MB. Conversely, by using a very high threshold value, when only the corresponding center of 

the search space is checked and only one calculation is required to compare SAD. Hence, the minimum 

bound of inC  is 

1min +Γ=inC                                                                    (15) 

operations per MB. As for the out-of-ROI MBs, the search range is reduced to 2, and the algorithm is the 

same as DSA. Thus, the upper and the lower bound of  outC  are defined as 

⎩
⎨
⎧

Γ=
Γ=

min

max 16

out

out

C
C

.                                                                   (16) 

For example, consider AMEA for a typical CIF video sequence with 352=W , 288=H , 16=M , 16=d  

and 7683 2 ==Γ M . The pre-defined ROIs of V0, V1, and V2 are all set to 108 blocks, and the number of the 

blocks, which are out of ROI, is 288. Therefore, the largest and the smallest numbers of calculations for 

Page 15 of 45 IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 16

AMEA per frame are 78.88max =AMEAC  million and =min
AMEAC 0.61 million, respectively while =FSBMAC 311.43 

million. After testing several vehicle surveillance videos, AMEAC  is usually around FSBMAC×1.0  since the 

probability of the short MVs is much higher than those of the long ones. 

 

IV. SYSTEM LEVEL DESIGN FOR AN EMBEDDED MOBILE VEHICLE SURVEILLANCE SYSTEM (EMVSS) 

Since EMVSS should work whether the vehicle is started or not, it has to be as low power consumption as 

it can. Therefore, a dual-core embedded platform, TI OMAP5912, is chosen, and the algorithms for EMVSS 

are all modified to be much simpler than their original versions in order to save the energy. EMVSS can be 

integrated with the signal triggers, such as open door, start engine, and etc., of the existing burglarproof 

systems, and it will automatically enter to the suspend mode when nothing happened for a period of time.  

The hardware and software architectures are shown in Fig. 16, and Fig. 17, respectively, and all programs, 

including the embedded Linux operating system, and the peripheral controllers, except for the H.264 encoder 

are executed by ARM.  

 

4.1. Corporation of ARM and DSP 

Figure 18 describes the efficient cross work between the ARM and the DSP cores, operating in parallel 

when the H.264 encoding function is enabled. At first, when the function is called, ARM initializes the 

system, reads frames in the storage devices and then writes into the external memory of DSP. When the 

source is ready, ARM activates the H.264 encoding routine of DSP. Then, the next frame will input into the 

buffer whenever the side information of fame is processed. After encoding of the current proceeding frame, 

the routine restores the necessary information and transits it to the next frame. In this configuration, ARM 

performs a part of the H.264 encoding process in addition to system control. It should be noted that ARM 

generally has the better architecture for the frame buffering than DSP. 
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Figure 19 shows the synchronization of audio and video encoding of both CPU cores in OMAP5912. 

Three threads, video, packaging, and streaming thread (VT, PT, and ST), are created at the ARM side. VT 

fetches the video data from the USB camera and sends to DSP for video encoding. Once the data are acquired, 

a timestamp is recorded for synchronization. The communication between ARM and DSP is solved by 

DSPGateway[40]. After DSP completes encoding a video frame, it sends a notifying signal through the 

mailbox to ARM, and VT starts receiving the  bitstream and the related information from DSP. After the 

receiving process is done, VT also sends the new information and a starting signal through mailbox to DSP 

immediately to ensure that there is a minimum latency between ARM and DSP. PT takes charge of packaging 

the video bitstream into H.264 file format, and adds the necessary header to make it compatible with RTP. ST 

takes charge of gathering necessary information for the streaming server. Furthermore, it transfers the data in 

UDP for remote clients to receive them via 3.5G/3G network. Figure 20 shows that when switching the 

threads, PT and ST acquire timestamps and bitstream created from VT. If the data are dropped due to the 

heavy network traffic, the frames which fall behind are dropped in order to keep in phase and they will not 

re-send again according to UDP. 

 

4.2. The implementation of the mobile clients 

Since more and more mobile phones support Java programming, the J2ME Java version is addressed for 

developing applications on mobile devices. But the API of J2ME is not as complete as that of J2SE. There are 

still many restrictions in developing the Java program. The socket programming is used to establish the 

connection between EMVSS and the mobile phone. The server-push method is applied in the data 

transmission between them. That is, the mobile phone will not download the files until the server is ready for 

the downloading. Figure 21 shows the state chart of this method and Fig. 22 is the processing flowchart of 

this program on a mobile phone. 
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Users can download the continuous real-time images to their mobile phones from EMVSS anywhere if this 

Java applet has been embedded in their mobile phones. However, the surveillance videos are very private 

information, so the authentications are required. The computing power and memory size of the mobile phone 

are both much lower than other peripherals so that software decoding of the received H.264 videos relies on 

H.264 hardware decoder on mobile phones. Therefore, a cellular phone with H.264 de-compressor, such as 

Nokia N95, is necessary. 

 

V. IMPLEMENTATION RESULTS 

AMEA has been successfully developed and integrated into EMVSS, which has installed and tested in a 

vehicle and the real road environments. The implementation results are described as follows. 

 

5.1. The estimation quality comparisons of AMEA and other ME algorithms 

The test video sequences: “V0,” “V1,” and “V2” are used to evaluate the performance of AMEA. The 

degrees of the influences of the lighting sources to these three videos are “almost zero”, “very serious”, and 

“middle”, respectively. All the sequences consist of 450 frames; the frame rate is 30 fps, and the image size is 

CIF. The search range is defined as [ ]1 , −− dd  where d=16. The performance of AMEA is compared to that 

of four well-known algorithms: FSBMA, NTSS, DSA, and HEXBS. In addition to these non adaptive 

algorithms, FADTS is also implemented by the standard C language on a normal PC with Pentium 4 

processor at 3.0GHz and a total of 1G byte DDR400 SDRAM. The input sequences are all the same, which 

can avoid the distinct quality due to the different fragment in the same test patterns, and the target output 

PSNR of FADTS and AMEA is set to 30 dB.  

Tables II and III present the results. Table II describes the estimation quality of these six algorithms in 

terms of PSNR, and Table III shows the comparisons of the normalized processing speed. In order to truly 

reflect the MV accuracy, the estimation results are made by the MB and the corresponding MV without the 
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inflation of the error residuals. In Table II, AMEA can maintain the pre-defined PSNR by the adaptive 

threshold, and it even outperforms the FSBMA when the input video sequences have lighting effects. The 

HEA adopted by AMEA can reduce the influences from the light sources, and it can provide higher 

correlations between the adjacent frames, as shown in Fig. 23, and Fig. 24. Therefore, the performance of 

AMEA in V1 and V2 is the highest among these frameworks. Since AMEA adopts the simple DSA with 

small search range for the blocks out of ROI, the quality of V0 is worse than other algorithms. However, the 

difference is negligible. Furthermore, the processing speed of AMEA is as fast as HEXBS and DSA while 

providing better quality. It can be observed that FADTS is almost as slow as FSBMA if the target output 

PSNR is unachievable. From these experimental results, AMEA can solve the major problems of the vehicle 

surveillance videos, and it is suitable for the embedded platform due to its lower complexity. 

 

5.2. The performance and functionalities of EMVSS 

With the tight cooperation between ARM and DSP, the system parameters are shown in Table IV. If the 

images are always ready for processing, the H.264 encoder with the efficient AMEA can calculate 7 FPS. 

However, after adding the system overhead, such as the dual-core intercommunication, the frame grabbing 

latency, the memory collision hazard, the 3.5G/3G internet transmission delay, and etc., the actual frame rate 

of the surveillance video, which is decoded and shown on the screen of the mobile phone, is around 4 FPS, 

which is enough for the checking the status of the vehicles and recognizing the intruders. Moreover, EMVSS 

will be activated only when the triggers from the sensors and the users, or it will stay in the suspend mode to 

greatly save the battery energy when the car is not moving and the fuel-to-electricity procedure is disable. 

The power consumption of EMVSS is quite small no matter if it is enable or not, and EMVSS can wake up 

from the suspend mode in a very short time to provide the users real-time notifications. Therefore, EMVSS is 

very suitable for developing the vehicle applications, and the GUI developed on mobile phones is shown in 

Fig. 25.  
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VI. CONCLUSIONS 

This paper has overcame the video encoding problems, such as lighting effects, outside environmental 

influences, and the quality issues of the in-ROI part, in the vehicle surveillance videos. Moreover, the design 

and implementation of AMEA, which adopts an efficient HEA to pre-process the images to reduce the 

luminance changing due to the different environments, are proposed. An adaptive and low complexity MV 

search procedure in and out of ROI is developed to increase the calculation speed and the encoding quality, 

and be integrated into EMVSS, which is suitable for telematics because of its low power consumption and 

stability. EMVSS can capture the real-time images inside the car, compress it with H.264 standard, and 

transfer it to the mobile phones. The programs with friendly GUI are completed to make the users to browse 

the instant videos through 3.5G/3G network to determine whether their properties are stolen or not anytime 

and anywhere.  
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Fig. 1. The vehicle surveillance image with ROI. 
 

 

Fig. 2. The tunnel which will cause lighting effects. 
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(a) 

 
(b) 

Fig. 3. (a)The brightest image, (b)The darkest image of V1. 
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Fig. 4. The kM  of each frame of V1 

 

 

(a) 
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(b) 

Fig. 5. (a)The brightest image, (b)The darkest image of V2. 
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Fig. 6. The kM  of each frame of V2 
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Fig. 7. The correlation between each frame pairs of V1 
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Fig. 8. The correlation between each frame pairs of V2 

 

Page 28 of 45IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 29

M_NC_1

35

45

55

65

75

85

95

105

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433

 
(a) 
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(b) 

Fig. 9. (a) The kM  of each frame ,(b)The correlation between each frame pairs of V0 
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Fig. 10. The manipulated MVs 
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(a) 
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(b) 

Fig. 11. (a) depicts the probability of the magnitude of MVs in and (b) out of ROI for all frames of V0. 
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Fig. 12. (a) the histograms of the input frame before and (b) after the pre-processing. 
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Fig. 13. AMEA search diamonds 0SD , 1SD  and 2SD . 

 

 

Fig. 14. Closed-loop adaptation process for AMEA. 
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Fig. 15 The state of the ping-pong buffer 
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Fig. 16 The hardware architecture of EMVSS 
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Fig. 17 The software architecture of EMVSS 
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Fig. 18 The proposed H.264 encoding data path  
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Fig.  19 The synchronization of audio and video encoding 

 

 
Fig.  20 Communication between related threads 
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Fig. 21 The state chart of server-push we addressed. 

 

 

Fig. 22 The processing flowchart of the program on a mobile phone 
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(a)V1 
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(b)V2 

Fig. 23 The correlation between each frame pairs of (a)V1 and (b)V2 before and after HEA 
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(b) 

Fig. 24 The kM  of each frame of (a)V1 and (b)V2 before and after HEA 

 

 

Fig. 25 The GUI developed on mobile phones. 
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Table I    The encoding quality comparisons of the different videos in dB. 

Video 
Sequence PSNR 

V0 34.09 
V1 25.23 
V2 27.55 

 

 

Table II    The quality comparisons of the blocks in and out of ROI of different video sequences in dB.  

AMEA FSBMA FADTS Video 
Sequence In Out In Out In Out 

V0 30.37 34.62 32.27 35.38 30.75 30.86 
V1 29.86 31.35 24.73 25.91 24.67 25.79 
V2 30.12 32.97 26.24 28.47 26.16 28.42 

HEXBS DSA NTSS Video 
Sequence In Out In Out In Out 

V0 31.87 35.13 31.95 35.17 30.55 34.87 
V1 23.82 25.67 23.89 25.74 22.78 23.19 
V2 25.91 28.03 26.11 28.12 25.07 26.55 

 

 

Table III    The normalized processing speed comparisons of the different videos 

Video 
Sequence AMEA FSBMA FADTS 

V0 0.07 1 0.25 
V1 0.15 1 0.89 
V2 0.14 1 0.77 

Video 
Sequence HEXBS DSA NTSS 

V0 0.11 0.12 0.07 
V1 0.21 0.22 0.07 
V2 0.16 0.17 0.07 
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Table IV    The specification of EMVSS. 

Processor OMAP5912 @ 192 MHz 
Profile H.264 baseline 

Only encode 7 frames/second Frame rate Overall 4 frames/second 
Average compression ratio 91.78 

Image size QCIF 
Active 5W 

Power consumption Suspend 20 Wμ  
Transmission method 3.5G / 3G 

Storage Compact Flash Card 
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