
BANGLADESH UNIVERSITY OF ENGINEERING &

TECHNOLOGY

Tunable Parameters for IEEE 802.11

based Ad-Hoc Network

by

S.M. Rifat Ahsan

Student No. 0405023

Mohammad Saiful Islam

Student No. 0405010

Naeemul Hassan

Student No. 0405018
A thesis submitted in partial fulfillment for the

degree of Bachelor of Science in Computer Science & Engineering

in the

Faculty of Electrical & Electronic Engineering

Department of Computer Science & Engineering

October 2009

http://www.buet.ac.bd
http://www.buet.ac.bd
http://www.buet.ac.bd/cse/

Declaration of Authorship

We, declare that this thesis titled, “Tunable Parameters for IEEE 802.11 based Ad-Hoc

Network’ and the work presented in it are our own. We confirm that:

� This work was done wholly or mainly while in candidature for the degree of Bach-

elor of Science in Computer Science & Engineering at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where We have consulted the published work of others, this is always clearly

attributed.

� Where We have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� We have acknowledged all main sources of help.

S.M. Rifat Ahsan

Student No. 0405023

Mohammad Saiful Islam

Student No. 0405010

Naeemul Hassan

Student No. 0405018

i

Certificate

The thesis titled “Tunable Parameters for IEEE 802.11 based Ad-Hoc Network” sub-

mitted by S.M. Rifat Ahsan, Mohammad Saiful Islam, and Naeemul Hassan, has been

accepted as satisfactory in partial fulfillment of the requirement for the degree of Bach-

elor of Science & Engineering in Computer Science & Engineering held in October 2009.

Dr. A.K.M Ashikur Rahman

Assistant Professor

Computer Science & Engineering

Bangladesh University Of Engineering & Technology

Dhaka-1000, Bangladesh

ii

“If builders built buildings the way programmers wrote programs, then the first wood-

pecker that came along would destroy civilization.”

Murphy’s Laws of Technology

Abstract

IEEE 802.11 is a well known standard for wireless local area networks for both Infras-

tructure Based and Ad-Hoc networks. This standard uses several parameters which ad-

ministrates the operation of the protocol in Physical and Medium Access Control(MAC)

layer of the network. In our thesis research we have worked on various parameters for the

MAC layers. In the original standard these parameters have fixed values. But our work

began by searching for procedures to tune the parameters in adaptive ways. Later we

have concentrated our search on a particular parameter; RTS Threshold. IEEE 802.11

Medium Access Control (MAC) protocol employs two techniques for packet transmission;

the basic access scheme and the RTS/CTS reservation scheme. RTS Threshold plays

an important role in the performance of the network by choosing a particular scheme to

use for a transmission. In our research, we, point out the advantages and disadvantages

of RTS/CTS scheme. Then we state the problems of having a fixed RTS Threshold.

Next, we present a numerical method to fix RTS threshold adaptively based on network

traffic to make a balance between the basic Scheme and the RTS/CTS scheme for having

a optimized network throughput. All theoretical analysis and algorithms are validated

by simulation. We have used the Network Simulator (NS2) tool for the experimental

simulations. We substantiate that our proposal outperforms the IEEE 802.11 standard

in the static network situation and also in multi hop environment considering hidden

node problem.

Acknowledgements

First of all we would like to thank our supervisor, Dr. A.K.M Ashikur Rahman, for

introducing us to the amazingly interesting world of Ad-Hoc Wireless Network and

teaching us how to perform research work. We, ourselves were interested about wire-

less networking but he had shown us the great treasure of this ever flourishing field of

communications. He taught us how to go through a previous research paper, analyze a

problem and how to conduct simulation in NS2. Without his continuous supervision,

guidance and valuable advice, it would have been impossible to complete the thesis. We

are especially grateful to him for his encouragement at times of disappointment, and for

his patience with our wildly sporadic work habits. We are grateful to all other friends

for their continuous encouragement and for helping us in thesis writing. We would like

to express our gratitude to all our teachers. Their motivation and encouragement in

addition to the education they provided meant a lot to us. We have taken support from

various sources about Ad-Hoc Wireless Networks, NS2, Latex and we are thankfull to

the writers of those books, publishers of the websites. Last but not least, we are grateful

to our parents and to our families for their patience, interest, and support during our

studies.

v

Contents

Declaration of Authorship i

Certificate ii

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Communication and Networks . 1

1.1.1 Wireless Network . 1
1.1.2 Wirelss Ad-Hoc Network . 2

1.2 Motivation and Our Contribution . 3

2 Background 4
2.1 Ad Hoc Wireless Network . 4

2.1.1 Cellular and Ad Hoc Wireless Networks 5
2.1.2 Application of Ad Hoc Wireless Networks 5
2.1.3 Issues in Wireless Ad Hoc Networks 7

2.2 Medium Access Control Protocols for Ad Hoc Wireless Networks 8
2.2.1 Issues in Designing MAC Protocol for Ad Hoc Wireless Network . 8
2.2.2 Design Goals of a MAC Protocol for Wireless Ad Hoc Network . . 9
2.2.3 Classifications of MAC protocols 10

2.3 IEEE 802.11 Standard . 11
2.3.1 802.11 MAC Layer . 12

2.4 Tunable Parameters of IEEE 802.11 . 14
2.5 Past Works . 16

2.5.1 Related Works . 18

3 Tuning RTS-Threshold 19

vi

Contents vii

3.1 Related Terms Used with RTS-Threshold 19
3.1.1 Hidden Terminal Problem . 19
3.1.2 Exposed Teminal problem . 20

3.2 Advantages of RTS-CTS mechanism . 21
3.3 Disadvantages of RTS-CTS mechanism . 21
3.4 Disadvantages of Using Fixed Value of RTS-Threshold 22
3.5 The Relative Definition of Small . 23
3.6 The Algorithm . 24

4 Validation by Simulation 25
4.1 Network Simulator 2 . 25
4.2 Experimental Setup . 26
4.3 Performance Metrics . 26
4.4 Scenario Generation . 26
4.5 Traffic Generation . 27
4.6 Experimental Results . 33

5 Conclusion and Future Works 40

A NS2 The Network Simulator 41
A.1 What is NS2 . 41
A.2 Installing NS2 . 41
A.3 Set Path . 41
A.4 Validation . 42
A.5 Scenario Generation . 42
A.6 CBR Traffic Generation . 43
A.7 Writing Simulation Generation File . 43
A.8 Trace Generation . 44
A.9 Trace Analysis . 45
A.10 Links to related sites . 47

B Codes Modified 49
B.1 Mac Layer Modification . 49

B.1.1 File mac-802 11.h . 49
B.1.2 File mac-802 11.cc . 50

B.2 Linking TCL variables to C++ . 55
B.3 Random Packet Densities in Traffic . 57
B.4 Parameters in TCL . 57
B.5 Static Network Generation . 59

C IEEE 802.11 MAC in NS2 60
C.1 Class States . 60
C.2 Important Functions . 61

C.2.1 recv() . 61
C.2.2 sendDATA() . 62
C.2.3 sendRTS() . 62

Contents viii

C.2.4 sendACK() . 63
C.2.5 deferHandler() . 63
C.2.6 check pktRTS() . 63
C.2.7 check pktTX() . 64
C.2.8 transmit() . 64
C.2.9 send timer() . 65
C.2.10 RetransmitData() . 65
C.2.11 tx resume() . 66
C.2.12 collision() . 66
C.2.13 recv timer() . 67
C.2.14 recvCTS() . 67
C.2.15 recvACK() . 68
C.2.16 rx resume() . 68
C.2.17 backoffHandler() . 68
C.2.18 Miscellaneous Functions . 68

C.3 Timers . 69
C.4 Flow of Transmission . 70

C.4.1 Successfull Transmission . 71
C.4.2 RTS RE-Transmission . 74
C.4.3 Data RE-Transmission . 75

D GNUPlot 77
D.1 Description . 77

Bibliography 79

List of Figures

2.1 Ad-Hoc Wireless Network . 5
2.2 Basic CSMA/CA Access Mechanism . 13
2.3 CSMA/CA With RTS/CTS Mechanism 13

3.1 Hidden Terminal Problem . 20
3.2 Exposed Terminal Problem . 20
3.3 RTScurrent Calculation Using CDF . 23

4.1 η vs Throughput Node: 50 Packet size: 8-512 Byte 28
4.2 η vs Throughput Node: 50 Packet size: 16-512 Byte 28
4.3 η vs Throughput Node: 50 Packet size: 32-512 Byte 29
4.4 η vs Throughput Node: 50 Packet size: 64-512 Byte 29
4.5 η vs Throughput Node: 75 Packet size: 8-512 Byte 30
4.6 η vs Throughput Node: 75 Packet size: 16-512 Byte 30
4.7 η vs Throughput Node: 75 Packet size: 32-512 Byte 31
4.8 η vs Throughput Node: 75 Packet size: 64-512 Byte 31
4.9 η vs Throughput Node: 100 Packet size: 8-512 Byte 32
4.10 η vs Throughput Node: 100 Packet size: 16-512 Byte 32
4.11 η vs Throughput Node: 100 Packet size: 32-512 Byte 33
4.12 Instantaneous Throughput Node: 50 Window Size δ= 10 34
4.13 Instantaneous Throughput Node: 50 Window Size δ= 20 34
4.14 Instantaneous Throughput Node: 50 Window Size δ= 50 35
4.15 Instantaneous Throughput Node: 75 Window Size δ= 10 35
4.16 Instantaneous Throughput Node: 75 Window Size δ= 20 36
4.17 Instantaneous Throughput Node: 75 Window Size δ= 50 36
4.18 Instantaneous Throughput Node: 100 Window Size δ= 10 37
4.19 Instantaneous Throughput Node: 100 Window Size δ= 20 37
4.20 Instantaneous Throughput Node: 100 Window Size δ= 50 38
4.21 Comparison between Adaptive & Fixed RTS Threshold Scheme 38

C.1 Successfull transmission: Part1 . 71
C.2 Successfull transmission: Part2 . 72
C.3 Successfull transmission: Part3 . 73
C.4 RTS Retransmission . 74
C.5 Data Retransmission: Part1 . 75
C.6 Data Retransmission: Part2 . 76

ix

List of Tables

2.1 Tunable Parameters of 802.11 . 14

x

Dedicated to Our parents -

S.M Rifat Ahsan

Mohammad Saiful Islam

Naeemul Hassan

xi

Chapter 1

Introduction

1.1 Communication and Networks

A computer network is an interconnected collection of independent computers which aids

communication in numerous ways. Apart from providing good communication medium,

sharing of available resources, improved reliability of service, and cost-effectiveness are

some of the advantages of computer networking.

A computer network allows computers to communicate with many other and to share

resources and information. The Advanced Research Projects Agency (ARPA) funded

the design of the “Advanced Research Projects Agency Network” (ARPANET) for the

United States Department of Defense. It was the first operational computer network in

the world. Development of the network began in 1969, based on designs starting in the

1960s.

1.1.1 Wireless Network

Wireless network refers to any type of computer network that is wireless, and is com-

monly associated with a telecommunications network whose interconnections between

nodes is implemented without the use of wires. Wireless telecommunications networks

are generally implemented with some type of remote information transmission system

that uses electromagnetic waves, such as radio waves, for the carrier and this implemen-

tation usually takes place at the physical level or “layer” of the network.

Types of wireless networks:

1

Chapter 1. Introduction 2

• Wireless Personal Area Network (WPAN) is a type of wireless network that inter-

connects devices within a relatively small area, generally within reach of a person.

For example, Bluetooth.

• Wireless Local Area Network (WLAN) is a wireless alternative to a computer Local

Area Network (LAN) that uses radio instead of wires to transmit data back and

forth between computers in a small area such as a home, office, or school. Wireless

LANs are standardized under the IEEE 802.11 series. For example, Wi-Fi.

• Wireless Metropolitan area networks are a type of wireless network that connects

several Wireless LANs. For example, WiMAX.

1.1.2 Wirelss Ad-Hoc Network

In the last few years, there has been a big interest in Ad-Hoc Wireless Networks as they

have tremendous military and commercial potential. An ad-hoc wireless network is a

wireless network, comprised of mobile computing devices that use wireless transmission

for communication, having no fixed infrastructure(a central administration such as base

station in cellular network or an access point in wireless local network.) The mobile

devices also serves as routers due to the limited range of the wireless transmission of

these devices, that is, several devices may need to route or relay a packet before it reaches

to its final destination. Ad hoc wireless network can be deployed quickly anywhere and

anytime as they eliminate the complexity of infrastructure setup.

The decentralized nature of wireless ad hoc networks makes them suitable for a variety

of applications where central nodes can’t be relied on, and may improve the scalability

of wireless ad hoc networks compared to wireless managed networks, though theoretical

and practical limits to the overall capacity of such networks have been identified.

Minimal configuration and quick deployment make ad hoc networks suitable for emer-

gency situations like natural disasters or military conflicts. The presence of a dynamic

and adaptive routing protocol will enable ad hoc networks to be formed quickly.

Wireless ad hoc networks can be further classified by their application:

• mobile ad hoc networks (MANETs)

• wireless mesh networks

• wireless sensor networks.

Chapter 1. Introduction 3

1.2 Motivation and Our Contribution

IEEE 802.11 standard uses a numerous parameters for its operation. In the standard

these parameters are given default values. Some parameter values can be set by the user

explicitly. Work had been done by various researchers for tuning of these parameters.

They had been trying to set the values adaptively on the basis of some kind of network

performance matrix. The objective of setting the parameter values adaptively is to

maximize the gain(maximizing throughput, minimizing delay or access time, minimizing

collision, minimizing power consumption etc.)

Till now most wireless networks are logically subordinate to existing wired networks.

IEEE 802.11 was designed to complement existing LANs, not replace them. However,

networks have a way of growing, and users have a way of becoming more demanding.

Network’s performance “out of the box” is probably fairly poor, even if no one notices.

Changing the physical environment (by experimenting with access point placement,

external antennas, etc.) may alleviate some problems, but others may best be resolved

by tuning administrative parameters.

Some of the parameters used in the IEEE 802.11 MAC layer are; BeaconInterval, RTS-

Threshold, Fragmentation-Threshold, Long Retry Limit, Short Retry Limit, Listen in-

terval, DTIM Window, ATIM Window, Active Scan Timer, Passive Scan Timer, Au-

thenticationTimeout, Association Timeout. But only RTS-Threshold, Long Retry Limit,

Short Retry limit, Fragmentation Threshold, and Contention Window Size are used by

DCF mode of operation.

In our thesis we have investigated RTS-Threshold, Retry Limits, and Contension Win-

dow Size for tuning them. We looked into the past works related to the adaptive tuning

of these parameters. Finally we have chosen RTS-Threshold for our work.

RTS-Threshold is an important parameter in DCF mode of operation. The value of

RTS-Threshold can effect available radio capacity, throughput, and battry life. But

setting the value arbiterily can effect the throughput badly.

We have found that there is much space for research on tuning of RTS-Threshold. After a

long research and experiments we have finally devised a method of adaptively tuning the

RTS threshold value with the help of current packet size distribution of the network. Here

this distribution means the size of the packets currently flowing through the network.

Chapter 2

Background

2.1 Ad Hoc Wireless Network

Multi hop-relaying is the principle behind Ad-Hoc Networks. King Darius I, in about

500 BC started using this technique, for transmitting messages around his ruled areas.

He placed men, on top of tall structures, who would relay the message from one person

to another. Researchers from University of Hawaii, in 1970 invented ALOHAnet, which

was used to link various universities on the Hawaiian islands. ALOHAnet was the first

networks to use common medium sharing among various stations. The success of the

system triggered the work of packet radio network(PRNET) project sponsored by de-

fense advanced research project agency(DARPA)[1]. hough the initial attempt had a

centralized control, it quickly evolved into a distributed multi hop wireless communi-

cation system that could operate over a large area. PRNET used ALOHA and carrier

sense multiple access(CSMA) to share common resource, which was a better technology

than basic ALOHAnet scheme. The system was designed to self-organize, self-configure,

and a direct radio connectivity for the dynamic operation of a routing protocol without

any support from fixed architecture.

Realizing the necessity of open standards in this emerging area of communication net-

work Internet Engineering Task Force(IETF), termed the mobile ad hoc networks(MANET)

working group [2], was formed to standardize the protocols and functional specifications

of wireless ad hoc networks. Recent advances in wireless network architectures reveal

solutions that enable the ad hoc network to work in the presence of infrastructure. Multi

hop cellular networks(MCN)[3], and self organizing packet radio ad hoc networks with

overlay(SOPRANO) [4] are examples of such type. These hybrid networks increases the

capacity of system significantly.

4

Chapter 2. Background 5

Figure 2.1: Ad-Hoc Wireless Network

2.1.1 Cellular and Ad Hoc Wireless Networks

The current cellular networks are classified as the infrastructure dependent networks.

The path setup between two nodes is completed through the base station.

Ad hoc wireless networks are capable of operating without the support of any fixed

infrastructure. The absence of any central control system makes the routing complex

compared to cellular networks. The path setup between two nodes in ad hoc network is

done through intermediate nodes. For the distributive system to work the mobile nodes

of ad hoc network are needed to be more complex than that of cellular networks.

2.1.2 Application of Ad Hoc Wireless Networks

Military Applications

Setting up fixed infrastructure in enemy territory for communications among group of

soldiers may not be possible. In such environment ad hoc networks provide required

communication mechanism quickly. Another application in this area can be the coordi-

nation of military objects moving at a high speed.

Collaborative and Distributive Computing

The requirement of a temporary communication infrastructure for quick communica-

tion with minimal configuration among a group of people in a meeting or conference

necessitates the formation of an ad hoc wireless network.

Chapter 2. Background 6

Emergency Operations

Ad hoc networks are very useful in emergency operations such as search and rescue,

and crowd control. The major factor that favors ad hoc networks for such task is the

self configuration of the system with minimal overhead, the freedom of flexibility and

mobility, and the unavailability of infrastructure. In many situations like war or natu-

ral disaster, the infrastructure can be destroyed and ad hoc networks can be deployed

quickly.

Wireless Mesh Networks

Wireless mesh networks are ad hoc wireless networks that are formed to provide an

alternative communication infrastructure for mobile or fixed nodes, without the spec-

trum reuse constraints and the requirements of network planning of cellular networks.

The investment required in the system is much less than what is required for the cellu-

lar networks. Such networks are formed by placing wireless relaying equipment spread

across the area to be covered by the network. The possible deployment scenarios are,

residential zones, highways, business zones, and university campuses.

Wireless Sensor Networks

Sensor networks are special types of ad hoc networks that are used to provide wire-

less communication infrastructure among the sensors deployed in a specific application

domain. Sensor nodes are tiny devices that have the capability of sensing physical pa-

rameters, processing the data gathered, and communicating over the network to the

monitoring station. The issues that differs it from a traditional ad hoc are,

• Non mobility of nodes

• Large size of network

• Varying density of networks.

• Power Constraints.

• Data fusion

• Varying traffic distribution.

Chapter 2. Background 7

Hybrid Wireless Network

This is the mixture of ad hoc and infrastructure based wireless networks. The major

advantages of this type of network is,

• Higher capacity than cellular networks.

• Increased flexibility and reliability in routings.

• Better coverage and connectivity in holes(areas that are not covered by fixed in-

frastructure).

2.1.3 Issues in Wireless Ad Hoc Networks

The major issues that are discussed in wireless ad hoc networks are,

• Medium Access Scheme

• Routing

• Multicasting

• Transport layer protocol

• Pricing scheme

• QoS provisioning

• Self-organization

• Security

• Energy management

• Addressing and service discovery

• Scalability

• Deployment considerations

Chapter 2. Background 8

2.2 Medium Access Control Protocols for Ad Hoc Wire-

less Networks

Nodes in the wireless network share a common broadcast radio channel. Since the radio

spectrum is limited, the bandwidth available for communication in such networks is

also limited. Access to this shared medium should be controlled in such manner that

all nodes receive a fair share of the available bandwidth, and the bandwidth is utilized

efficiently.

2.2.1 Issues in Designing MAC Protocol for Ad Hoc Wireless Network

Bandwidth Efficiency

The MAC protocol must be designed in such a way that the scarce bandwidth is utilized

in an efficient manner. The control overhead must be kept as minimal as possible. Band-

width efficiency can be defined as ratio of bandwidth used for actual data transmission

to the total available bandwidth. MAC protocol must maximize bandwidth efficiency.

Quality of Service Support

Due to the inherent nature of the nodes in the system, providing QoS support to data

sessions is very difficult. Bandwidth reserved at the start of transmission may become

invalid due to mobility of nodes. QoS support is necessary for time critical traffic

sessions. MAC protocol that supports real time traffic must support some kind of

resource reservation mechanism that take into consideration mobility of nodes.

Synchronization

The MAC protocol must take into consideration the synchronization between nodes

in the network. Synchronization is necessary for bandwidth reservation. Exchange of

control packets may be required for achieving time synchronization among nodes.The

control packets must not consume too much bandwidth

Hidden and Exposed Terminal Problems

The hidden and exposed terminal problems are unique to wireless networks. The hidden

and exposed terminal problems significantly reduce the throughput of a network when

Chapter 2. Background 9

the traffic load is high. It is therefor desirable that the MAC protocol be free from the

hidden and exposed terminal problems

Error Prone Shared Broadcast Channel

When a node is receiving no other nodes apart from the sender should transmit. A node

should get access to medium, if its transmission does not interfere any ongoing session.

The collision probability is very high in the wireless network. A MAC protocol must

minimize collision.

Lack of Central Coordination

In cellular network the base station allocate bandwidth to the mobile nodes, but this

is not possible for ad hoc networks. Therefore the nodes should be scheduled in a

distributive manner for gaining access to the medium.This may require exchange of

control information. The MAC protocol must ensure that the bandwidth overhead of

this exchange is not too high.

Mobility of Nodes

Nodes are mobile most of the times. If mobility is too high then bandwidth reservation

or channel reservation may become useless The protocol must ensure that performance

does not effect to much due to mobility.

2.2.2 Design Goals of a MAC Protocol for Wireless Ad Hoc Network

• The operation should be distributed.

• Should support QoS for real time traffic.

• The access delay must be kept low.

• Bandwidth must be used efficiently.

• Fair allocation of resource must be ensured.

• Control overhead must be kept minimum.

• Should minimize the effect of hidden and exposed node problems.

• Must be scalable to large networks.

Chapter 2. Background 10

• It should have power control mechanisms in order to efficiently manage energy

consumptions of nodes.

• The protocol should have mechanisms for adaptive data rate control.

• Should provide time synchronization among nodes.

2.2.3 Classifications of MAC protocols

MAC protocols for ad hoc wireless networks can be classified into several categories based

on various criteria such as initiation approach, time synchronization, and reservation

approach. Ad hoc network MAC protocols can be classified into three basic types,

• Contention based protocols.

• Contention based protocols with reservation mechanism.

• Contention based protocols with scheduling mechanism.

Apart from these, there exist other MAC protocols that can not be classified clearly

under any one of the above three types.

Contention Based Protocols

These protocols follow a contention based channel access policy. A node does not make

any resource reservation in priori. Whenever it receives a packet to be transmitted, it

contends with other nodes for access to the shared channel. This system can not provide

QoS guarantee to session since nodes are not guaranteed regular access to the channel.

They are further divided in two types,

• Sender initiated protocols. Packet transmission are initiated by sender node.

• Receiver initiated protocols. The receiver node initiates the contention resolution

protocol.

Sender initiated protocols are further divided into two types,

• Single channel sender initiated protocols. Here the total available bandwidth is

used as it is, without being divided. A node that wins the contention to the channel

can make use of the entire bandwidth.

Chapter 2. Background 11

• Multichannel sender initiated protocols. Here the available bandwidth is divided

into multiple channels. This enables several nodes to simultaneously transmit

data, each using a separate channel. Some protocols dedicate a frequency channel

exclusively for transmitting control information.

Contention Based Protocols with Reservation Mechanisms

Ad hoc wireless networks sometimes may need to support real time traffic, which requires

QoS guarantees to be provided. In order to support such traffic, certain protocols have

mechanisms for reserving bandwidth in priori. Such protocols can guarantee QoS to

time sensitive traffic sessions. These protocols are classified into two types,

• Synchronous protocols: These systems require time synchronization among all the

nodes in the network, so that reservation made by a node are known to other nodes

in its neigbourhood. Global time synchronization is difficult to achieve.

• Asynchronous protocols: They do not require any global synchronization among

the nodes. These protocols usually use relative time information for effecting

reservations.

Contention Based Protocols with Scheduling Mechanisms

These protocols focus on packet scheduling at nodes, and also scheduling nodes for

access to the channel. Node scheduling is done in a manner so that all nodes are treated

fairly. Scheduling based schemes are also used for enforcing priorities among flows whose

packets are queued at nodes. Some scheduling schemes also take into consideration

battery characteristics, such as remaining battery power, while scheduling nodes for

access to the channel.

2.3 IEEE 802.11 Standard

The IEEE 802.11 standard specifies the physical layer, MAC layer, adapted to the specific

requirements of wireless LANs. The objective of this standard is to provide wireless

connectivity to devices that requires rapid deployment. This standard was brought out

in 1997. A later version is IEEE 802.11b [3], commercially known as Wi-Fi. The 802.11

working group had to examine connection management, link reliability management,

and power management. In addition provision for security had to be introduced.

Chapter 2. Background 12

2.3.1 802.11 MAC Layer

802.11 standard supports two modes of operations. The first is called DCF(Distributed

Coordination Function), which is an ad hoc mode and does not require any central

control. The second is called PCF(Point Coordination Function), uses the base station

to control all the activities in its cell. It is the infrastructure mode.

The basic service supported are the mandatory asynchronous data service and an op-

tional real-time service. The asynchronous data service is supported for both unicast

and multi cast packets. The real time service is supported only in infrastructure based

networks.

Inter-Frame Spacing

Inter frame spacing refers to the time interval between the transmission of two successive

frames by any station. There are four types of IFS, SIFS, PIFS, DIFS,and EIFS, in order

from shortest to longest. They denote priority levels of access to medium. Shorter IFS

denotes higher priority to access the medium. The exact values of IFS are obtained from

the attributes specified in the physical layer management information base(PHYMIB)

and are independent of the station bit rate.

• Short IFS(SIFS) is defined for short control messages such as acknowledgments

for data packets and polling responses. The transmission of any packet should

begin only after the channel is sensed to be idle for a minimum time period of at

least SIFS.

• PCF IFS(PIFS) is the waiting time used for real time service.

• DCF IFS(DIFS) is for asynchronous data transfer within contention period.

• Extended IFS(EIFS) is used for resynchronizations whenever physical layer

detects incorrect MAC frame reception.

RTS-Threshold

A node wishing to send data initiates the process by sending a Request to Send frame

(RTS). The destination node replies with a Clear To Send frame (CTS). Any other

node receiving the RTS or CTS frame should refrain from sending data for a given time

(solving the hidden node problem). The amount of time the node should wait before

trying to get access to the medium is included in both the RTS and the CTS frame. This

Chapter 2. Background 13

Sender

Receiver

Other

Data

ACK

NAV

Defer Access

DIFSSIFSDIFS

Figure 2.2: Basic CSMA/CA Access Mechanism

RTS

CTS

DATA

ACK

NAV(RTS)

NAV(CTS)

NAV(DATA)

DEFER ACCESS

DIFS SIFS SIFS SIFS

SENDER

RECEIVER

OTHER

Figure 2.3: CSMA/CA With RTS/CTS Mechanism

protocol was designed under the assumption that all nodes have the same transmission

range. RTS/CTS is an additional method to implement virtual carrier sensing in Carrier

sense multiple access with collision avoidance (CSMA/CA). By default, 802.11 relies on

physical carrier sensing only which is known to suffer from the hidden terminal problem.

RTS/CTS protocol description

The RTS Threshold (RT) value which determines when the RTS/CTS handshaking

mechanism should be used is an important parameter to investigate; since different

RTS-Threshold values will produce different performance characteristics in data trans-

mission.If the packet size the node wants to transmit is larger than the threshold, the

RTS/CTS handshake gets triggered. If the packet size is equal to or less than threshold

the data frame gets sent immediately. Using a small value causes RTS packets to be sent

more often, consuming more of the available bandwidth, therefore reducing the apparent

throughput of the network packet. However, the more RTS packets that are sent, the

quicker the system can recover from interference or collisions – as would be the case in

a heavily loaded network, or a wireless network with much electromagnetic interference.

Chapter 2. Background 14

DCF Medium Access Mechanism

The DCF is based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoid-

ance) where carrier sensing is done by physical sensing and virtual sensing. Both sensing

mechanisms are used to determine the state of the medium. For physical carrier sensing

traditional CSMA/CA, as shown in Fig: 2.2 is used. It requires the nodes to first sense

the channel to check whether it is idle for a DCF Inter-frame Space (DIFS) interval, then

attempts packet transmission. On the other hand, for virtual carrier sensing(VCS), RT-

S/CTS handshake and Network Allocation Vector(NAV) scheme is used as shown in

Fig: 2.3. The Virtual Carrier Sensing employs RTS/CTS packets exchange for channel

reservation. The sender transmits a Request-To-Send frame to it’s receiver. The receiver

sends a Clear-To-Send frame if the NAV at the receiver indicates idle channel. Then the

sender transmits the DATA frame and waits for acknowledgment ACK.

2.4 Tunable Parameters of IEEE 802.11

Here is a list of administrative parameters that are used in IEEE 802.11 standard. These

parameters play very important roles in the operation of a network. In the original

standard fixed values are used for these parameters. But performance of a network can

be improved in many ways by tuning these parameters in optimum values.

Table 2.1: Tunable Parameters of 802.11

Parameter

name

Meaning and units Effect when decreased Effect when increased

Beacon In-

terval

Number of TUs be-

tween transmission of

Beacon frames.

Passive scans com-

plete more quickly,

and mobile stations

may be able to move

more rapidly while

maintaining network

connectivity

Small increase in avail-

able radio capacity

and throughput and

increased battery life.

RTS

Thresh-

old

Frames larger than the

threshold are preceded

by RTS/CTS exchange.

Greater effective

throughput if there

are a large number of

hidden node situations

.

Maximum theoretical

throughput is increased,

but an improvement

will be realized only if

there is no interference.

Chapter 2. Background 15

Fragmenta-

tion

Thresh-

old

Frames larger than the

threshold are transmit-

ted using the fragmen-

tation procedure.

Interference corrupts

only fragments, not

whole frames, so effec-

tive throughput may

increase.

Increases throughput

in noise-free areas by

reducing fragmenta-

tion acknowledgment

overhead.

Long Retry

Limit

Number of retransmis-

sion attempts for frames

longer than the RTS

threshold.

Frames are discarded

more quickly, so buffer

space requirement is

lower.

Retransmitting up to

the limit takes longer

and may cause TCP

to throttle back on the

data rate.

Short Retry

Limit

Number of retransmis-

sion attempts for frames

shorter than the RTS

threshold.

Same as long retry limit Same as long retry

limit.

Listen

Interval

Number of Beacon in-

tervals between awak-

enings of power-saving

stations.

Latency of unicast

frames to station is

reduced. Also reduces

buffer load on access

points.

Power savings are

increased by keeping

transceiver powered off

for a larger fraction of

the time.

DTIM Win-

dow

Number of Beacon in-

tervals between DTIM

transmissions (applies

only to infrastructure

networks).

Latency of multi cast

and broadcast data to

power-saving stations is

reduced. Also reduces

buffer load on access

points.

Power savings are

increased by keeping

transceiver powered off

for a larger fraction of

the time.

ATIM Win-

dow

Amount of time each

station remains awake

after a Beacon trans-

mission in an indepen-

dent network.

Increases power savings

by allowing mobile sta-

tions to power down

more quickly after Bea-

con transmission.

Latency to power-

saving stations is

reduced, and the buffer

load may be decreased

for other stations in the

network.

Active Scan

Timer

Amount of time a sta-

tion waits after sending

a Probe Response frame

to receive a response.

Station moves quickly

in its scan.

Scan takes longer but is

more likely to succeed.

Chapter 2. Background 16

Passive

Scan Timer

Amount of time a sta-

tion monitors a channel

looking for a signal.

Station may not find the

intended network if the

scan is too short.

Scan takes longer but is

more likely to succeed.

Authenti-

cation

Timeout

Maximum amount of

time between successive

frames in authentica-

tion sequence.

Authentications must

proceed faster; if the

timeout is too low,

there may be more

retries.

No significant effect.

Association

Timeout

Maximum amount of

time between successive

frames in association se-

quence.

Associations must pro-

ceed faster; if the time-

out is too low, there

may be more retries.

No significant effect.

2.5 Past Works

In the past few years wireless network has developed much and many works has been

done to increase its performance. Most of them has been done on the basis of 2-D Markov

Chain model. An intuitive mathematical analysis and simple equations were presented

for throughput and packet delay performance of IEEE 802.11 DCF by utilizing a Markov

chain model by [5] which is presented below.

Markov Chain Model Assumptions

Mathematical Modeling Assumptions

• Packets can encounter collisions only due to simultaneous transmissions (no trans-

mission errors)

• There are no hidden stations (all stations can hear others transmissions).

• The network consists of a finite number of contending stations.

• Saturated conditions, i.e. a station has always data ready for transmission.

• The collision probability of a transmitted packet is constant and independent of

the number of retransmissions.

Chapter 2. Background 17

Analytical Model

Utilizing a Markov chain model and after some algebra, the probability τ that a station

transmits in a randomly chosen slot equal to:

ifm ≤ m′ τ =
2(1− 2p)(1− pm+1)

W (1− (2p)m+1)(1− p) + (1− 2p)(1− pm+1)
(2.1)

ifm > m′ τ =
2(1− 2p)(1− pm+1)

W (1− (2p)m′+1)(1− p) + (1− 2p)(1− pm+1) +W2m′pm′+1(1− 2p)(1− pm−m′)
(2.2)

where m is the retry limit, m′ identifies the maximum number of backoff stages, W is

the contention window (CW) size and p is the packet collision probability given by:

p = 1− (1− τ)n−1 (2.3)

Time Interval Durations

The values of Ts and Tc depend on the medium access scheme and for the basic access

are given by:

T bas
s = T bas

c = DIFS + Theader +
l

C
+ SIFS + TACK (2.4)

and for the RTS/CTS scheme:

TRTS
s = DIFS + TRTS + SIFS + TCTS + SIFS + Theader +

l

C
+ SIFS + TACK (2.5)

TRTS
c = DIFS + TRTS + SIFS + TCTS (2.6)

where l is the payload length, C is the data rate, Ccontrol is the control rate, Theader, TACK , TRTS

and TCTS are the time intervals required to transmit the packet payload header, the

ACK, RTS and CTS control packets, respectively.

Chapter 2. Background 18

Theader = MAChdr
C + PHYhdr

Ccontrol
TACK = IACK

Ccontrol

TRTS = IRTS
Ccontrol

TCTS = ICTS
Ccontrol

where lACK , lRTSandlCTS is the length of ACK, RTS and CTS control packets respec-

tively, MAChdr is the MAC header and PHYhdr is the physical header. Authors in [6]

proved the superiority of RTS/CTS in highly loaded network. His work is based on this

2-D Markov chain model. Most of the dynamic approaches for adaptive RTSThreshold

are based on 2-D Markov model.

2.5.1 Related Works

The authors in[7], have evaluated the dependency of the RTS/CTS scheme on network

size , however , without providing any general expression for the RTS/CTS threshold.

But works in [8] and [9] has pointed out that the RTS/CTS handshake does not work as

well as expected in theory. Approaches to fix the value of RT can be clustered main lying

two types; Dynamic and Static. Authors in [10] has performed analysis to determine

RT values for maximum performance and proposed static value [RT = 0] for all nodes,

considering only single hop environment. On the other hand, dynamic approaches are

discussed in [11], [12], [10], [13], [5], [14]. In Others, such as in [12] and [13] packet

delivery ratio or transmission probability is emphasized. The common practice in [11],

[12], [5], [14] is not to consider hidden node problem.

Chapter 3

Tuning RTS-Threshold

3.1 Related Terms Used with RTS-Threshold

3.1.1 Hidden Terminal Problem

Hidden nodes in a wireless network refer to nodes that are out of range of other nodes

or a collection of nodes. Take a physical star topology with an access point with many

nodes surrounding it in a circular fashion: Each node is within communication range

of the AP, but the nodes cannot communicate with each other, as they do not have a

physical connection to each other. In a wireless network, it is likely that the node at the

far edge of the access point’s range, which is known as A, can see the access point, but

it is unlikely that the same node can see a node on the opposite end of the access point’s

range, B. These nodes are known as hidden. The problem is when nodes A and B start

to send packets simultaneously to the access point. Since node A and B can not sense

the carrier, Carrier sense multiple access with collision avoidance (CSMA/CA) does not

work, and collisions occur, scrambling data. To overcome this problem, handshaking is

implemented in conjunction with the CSMA/CA scheme.

In the basic transmission scheme due to the fact that carrier sensing range is almost equal

to transmission range of a node, it effectively increases the probability of collisions. The

problem of a station not being able to detect a potential competitor for the medium

because the competitor is too far away(based on their carrier sensing range) is called

the hidden node problem.

19

Chapter 3. Tuning RTS-Threshold 20

Figure 3.1: Hidden Terminal Problem

Currently Transmitting Wants to transmit

R1 S1 S2 R2

R1

S1

S2

R2

Broadcast range of each node

Figure 3.2: Exposed Terminal Problem

3.1.2 Exposed Teminal problem

In wireless networks, the exposed node problem occurs when a node is prevented from

sending packets to other nodes due to a neighboring transmitter. Consider an example

of 4 nodes labeled R1, S1, S2, and R2, where the two receivers are out of range of each

other, yet the two transmitters in the middle are in range of each other.

Here, if a transmission between S1 and R1 is taking place, node S2 is prevented from

transmitting to R2 as it concludes after carrier sense that it will interfere with the trans-

mission by its neighbor S1. However note that R2 could still receive the transmission of

S2 without interference because it is out of range from S1.

Chapter 3. Tuning RTS-Threshold 21

3.2 Advantages of RTS-CTS mechanism

To alleviate hidden node problem, Karn [15] proposed two way handshaking protocol

known as the RTS/CTS handshaking mechanism. Bharghaven et al. [16] proposed an

improved protocol which is known as RTS-CTS-DATA-ACK handshaking mechanism.

The advantages of this mechanism are

• To reduce frame collisions introduced by the hidden terminal problem

• Originally the protocol fixed the exposed terminal problem as well, but modern

RTS/CTS includes ACKs and does not solve the exposed terminal problem. This

mechanism helps to solve this problem only if the nodes are synchronized. When

a node hears an RTS from a neighboring node, but not the corresponding CTS,

that node can deduce that it is an exposed node and is permitted to transmit to

other neighboring nodes

3.3 Disadvantages of RTS-CTS mechanism

Though the RTS/CTS mechanism is able to solve the hidden node problem and reduce

packet collision probability, it has several disadvantages. Authors in [17] had discussed

several of these disadvantages like Inhibiting non-interfering parallel transmission, False

Blocking & and Virtual Jamming.

Inhibiting Non-interfering Parallel Transmission

RTS/CTS mechanism blocks some non-interfering transmission which would be possible

with the basic mechanism without collision. Thus, it will cause the reduction of overall

throughput.

False Blocking

In the false blocking problem a node can remain blocked during the whole interval of a

non-existing conversation. The worse fact is that, it can trigger a chain of nodes to be

blocked by the non-existing conversation.

Chapter 3. Tuning RTS-Threshold 22

Virtual Jamming

In the virtual jamming problem, a potential malicious node , can make use of the false

blocking problem by sending short RTS packets in short periods virtually jamming the

whole or a significant part of the network using relatively small power.

From the above discussion, we can realize that the RTS/CTS-based reservation scheme

trades some problems (like the hidden node problem) for others (inhibition of parallel

transmissions and exposure to virtual jamming attacks). While elimination of the inter-

ference caused by hidden nodes does have a positive impact on the network performance,

the problems introduced by the RTS/CTS mechanism will tend to counterbalance those

benefits. Therefore we need to continue with the both schemes (i.e. the basic scheme

and the RTS/CTS based scheme) in a balanced way to reduce the probability of collision

and at the same time to avoid the problems of RTS/CTS mechanism. This balance can

be achieved if we can avoid using the RTS/CTS mechanism for a certain η×100 percent

of the packets and use RTS/CTS mechanism for the rest (1 − η) × 100 percent. η can

be tuned to achieve best performance. Moreover the smaller ηpercent packets should be

transmitted using basic schemes without the RTS/CTS protection because the collision

probability is less for the small sized packets.

3.4 Disadvantages of Using Fixed Value of RTS-Threshold

When the payload is large, the probability of collision is high, so it is beneficial to use

RTS/CTS conversation. On the other hand, if the payload is small, the probability of

collision is comparatively low and it is better to go with the basic scheme. Traditionally

RTS- Threshold is set to a fixed small value. But setting to a fixed small value is not

optimal for all network situations and it can not effectively inter-mix the two schemes

over all the packets flowing through the network. The problem of having fixed RTS-

Threshold can be described as follows. As the packet size of a network is random and not

known before, with a fixed RTS-Threshold it may be happen that all the packets in the

network are having sizes larger than that fixed RTS-Threshold value. Consequently, all

the packets will be transmitted using RTS/CTS mechanism. Also the other way around

may happen, for example all the packets may have sizes smaller than the fixed value of

RTS-Threshold, causing all of them to be transmitted using the basic scheme. In both

the cases we can not use the η percent rule, therefore can not intelligently inter-mix

both schemes.

Chapter 3. Tuning RTS-Threshold 23

cdf

Packet Size

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 100 200 300 400 500 600

Cr

Pr

CsPs

currentRT

C
u
m
u
l
a
t
i
v
e

F
r
e
q
u
e
n
c
y

η

Figure 3.3: RTScurrent Calculation Using CDF

3.5 The Relative Definition of Small

We can adaptively set the value of RTS-Threshold based on network traffic then inter-

mixing these two schemes can be easily achieved. Our main proposal is too use basic

scheme for relatively small sized packets and use RTS/CTS mechanism for relatively

large size packets. To incorporate this idea, the value of RTS-Threshold needs to be

intelligently set to a value such that η × 100 percent of packet’s size fall below that

value. Mathematically it can be described as follows: suppose the sizes of packets flow-

ing through a node are s1, s2, s3, . . . , sn (in ascending sorted order) with probability

p1, p2, p3, . . . , pn. Then the value of RTS-Threshold is set to a value such that:

Pr{S ≤ RTS − Threshold} = η

where S is a random variable denoting packet size.

A node at first learns the sizes of the packets it is generating or forwarding as an

intermediate node for a certain time interval. Then it sets the value of RTS-Threshold

for the next interval using the above equation. It also continues it’s learning process in

the subsequent intervals and adjusts the RTS-Threshold dynamically from one interval

to another. The details of the algorithm is as follows.

Chapter 3. Tuning RTS-Threshold 24

3.6 The Algorithm

To set the RTS-Threshold dynamically, we need to observe the current distribution of

packet size in the network. But for this, we need information from all the active nodes.

This necessiates inter-layer communication(Routing-MAC layer). To avoid this over-

head, we considered packet distribution sensed by individual nodes. By considering flow

of packets through itself, a node evaluates the packet distribution in the neighbouring

environment.

We equip each node with a traffic observer which runs in the background. Having

received a packet p with size si, the node increments the frequency count fi for the

packet size si. Every δ seconds the traffic observer wakes up and calculates a new value

of RTS-Threshold based on the packet distribution statistics collected within the last δ

interval. To calculate new RT value, the observer at first rearranges the frequency count

of packet sizes in increasing order of packet size. Suppose the total number of different

packet sizes is n and S is a random variable denoting packet size. Let us denote Pi be

the probability that a packet‘s size is less than or equal to si. Then, mathematically:

Pi = Pr{S ≤ si} =

(∑i
j=1 fj∑n
k=1 fk

)

Note that using the above equation Pn = 1. Actually Pi is the cumulative distribution

function (CDF) for the different packet sizes which is depicted in Fig. 3.3.

Using this CDF, calculation of new RTS-Threshold is pretty simple. Let, Pr is the

greatest probability less then η, Ps is the packet size at Pr, Cr is the least probability

greater then η, and Cs is the packet size at Cr. Using linear interpolation the traffic

observer calculates the current RTS-Threshold using the equation below (see Fig. 3.3):

RTcurrent =
⌊
Ps +

(η − Pr) ∗ (Cs − Ps)
(Cr − Pr)

⌋

The average RTS-Threshold is updated as

RTaverage = bα ∗RTprev + (1− α) ∗RTcurrentc

where, RTprev=previous RTS-Threshold and α controls the relative weight of recent and

past history of RTS-Threshold calculation. The value of α lies between 0 to 1.

Chapter 4

Validation by Simulation

4.1 Network Simulator 2

Network simulation software enable us to predict behavior of a large-scale and complex

network system such as Internet at low cost under different configurations of interest

and over long period. Many network simulators, such as NS2, Openet, Qualnet are

widely available. We have used NS2 for this thesis. NS2 is a discrete event simulator

written in C++, with an OTcl interpreter shell as the user interface that allows the

input model files (Tcl scripts) to be executed. Most network elements in NS2 simulator

are developed as classes, in object-oriented fashion. The simulator supports a class

hierarchy in C++, and a very similar class hierarchy in OTcl. The root of this class

hierarchy is the TclObject in OTcl. Users create new simulator objects through the

OTcl interpreter, and then these objects are mirrored by corresponding objects in the

class hierarchy in C++. NS2 provides substantial support for simulation of TCP, routing

algorithms, queueing algorithms, and multicast protocols over wired and wireless (local

and satellite) networks, etc. It is freely distributed, and all source code is available.

Developing new networking protocols and creating simulation scripts are complex tasks,

which requires understanding of the NS2 class hierarchy, C++, and Tcl programming.

However, in this thesis, we have designed and ran simulations in Tcl scripts using the

simulator objects without changing NS2 core components such as class hierarchy, event

schedulers, and other network building blocks. The only change has been in the codes

of IEEE 802.11 mac layer and it’s associated timers.

25

Chapter 4. Validation by Simulation 26

4.2 Experimental Setup

We used an area of 1000×1000 square unit. We have done 2 different types of experiment

. One of them runs for 1000 time units and another runs for 800 time unit. For each

experiment we created 5 network topologies and have taken the average of the 5 results.

All the experiments were done using CBR traffic sources. The environment used was

multi-hop with the presence of hidden node. We considered a static network. For

traffic generation we have used an uniform packet size generator with min and max size

specified for each experiment. We did experiments in three network conditions; lite (50

nodes), medium (75 nodes), dense (100 nodes). For performance measurement we have

calculated the overall (aggregate) throughput of all the nodes.

4.3 Performance Metrics

We have chosen throughput as our performance matrix. Throughput is calculated as

follows:

Throughput=sum of all data packets successfully received by the destination nodes/to-

tal simulation time;

We compared the throughput evaluated at different η(Ratio). This η(Ratio) defines

throughput under basic scheme, throughput where all packets are transmitted main-

taining RTS/CTS scheme and throughput where different percent of packets gets the

benefit of RTS/CTS mechanism.

4.4 Scenario Generation

In order to carry out meaningful study of different networking issues like protocol in-

teraction, congestion control, effect of network dynamics, scalability etc it is necessary

to carry simulations on the right kind of scenario. Different scenarios can be used to

illustrate/compare interesting network performances. The NS scenario generator can

be used to create different random scenarios for simulation. We have taken area of

1000*1000. Our scenarios are consist of 50 nodes,75 nodes and 100 nodes and most

importantly we have considered static network. The command in NS-2 is Setdest to

generate the scenario.

./setdest − n < num of nodes > −p < pausetime > −s < maxspeed > −t <
simtime > −x < maxx > −y < maxy >>< outdir > / < scenario− file >
With ,

Chapter 4. Validation by Simulation 27

maxx=1000

Maxy=1000

Num of nodes=50 or 75 or 100 depending on experiment

Simulation time =800 or 1000ns

Pausetime=1040ns (Actually we take a paustime greater than simulation time to get a

static scenario)

Setdest command will generate a 1000*1000 topology with n nodes random distributed

in static environment.

4.5 Traffic Generation

Random traffic connections of CBR can be setup between mobile nodes using a traffic-

scenario generator script. In order to create a traffic-connection file, we need to define the

type of traffic connection (CBR or TCP), the number of nodes and maximum number of

connections to be setup between them, a random seed and in case of CBR connections,

a rate whose inverse value is used to compute the interval time between the CBR pkts.

So the command line looks like the following:

nscbrgen.tcl[−typecbr|tcp][−nnnodes][−seedseed][−mcconnections][−raterate][−mtmax time] >
output.tcl

with,

type=cbr

nodes=n

seed=1

mc connection=200

rate =x

mt = z

cbrget.tcl creates traffic having rate x with n nodes. We also considered packets with

different size from different nodes. The number of nodes are 50 or 75 or 100 depending

on the experiment. Rate is 2.0 or 4.0 or 6.0. The mt value sets the highest time by

which a source must start. It is normally set to 50 but in one experiment it is set to

varying amount like 200, 400, 600, and 800.

Chapter 4. Validation by Simulation 28

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.1: η vs Throughput Node: 50 Packet size: 8-512 Byte

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.2: η vs Throughput Node: 50 Packet size: 16-512 Byte

Chapter 4. Validation by Simulation 29

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.3: η vs Throughput Node: 50 Packet size: 32-512 Byte

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.4: η vs Throughput Node: 50 Packet size: 64-512 Byte

Chapter 4. Validation by Simulation 30

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.5: η vs Throughput Node: 75 Packet size: 8-512 Byte

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.6: η vs Throughput Node: 75 Packet size: 16-512 Byte

Chapter 4. Validation by Simulation 31

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.7: η vs Throughput Node: 75 Packet size: 32-512 Byte

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.8: η vs Throughput Node: 75 Packet size: 64-512 Byte

Chapter 4. Validation by Simulation 32

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.9: η vs Throughput Node: 100 Packet size: 8-512 Byte

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.10: η vs Throughput Node: 100 Packet size: 16-512 Byte

Chapter 4. Validation by Simulation 33

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t(

K
B

ps
)

η

Rate: 2
Rate: 4

Figure 4.11: η vs Throughput Node: 100 Packet size: 32-512 Byte

4.6 Experimental Results

In static network , if nodes have similar distribution of payload, RTS-Threshold will

converge to a fixed value eventually from its default value 0. Moreover if payload is

distributed within a range, it is also reflected in RTS-Threshold value.

In Fig. 4.1, 4.2, and 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11 overall

throughput for different η values are shown. When the value of η is set to 0 then all

packets are transmitted with RTS/CTS conversation. η = 1 indicates that all packets

are transmitted with basic scheme without any RTS/CTS. The current IEEE 802.11

standard transmits all packets with RTS/CTS dialogue. So the value of the curve with

η = 0, actually represents the performance of the current standard. It can be observed

that the throughput is high for 0 ≤ η ≤ 1 and in most of the experiments the optimum

value is found for 0.6 ≤ η ≤ 0.8.

In the graph of Fig. 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20 we see

the effect of change in throughput for the change in packet size distribution. Here we

have carefully devised the CBR generators to create 5 non overlapping time intervals of

200 time unit each. In each of the intervals, nodes generate packets of different sizes.

In first interval, packet size is uniformly distributed between 8 − 512 byte. In second

interval it is from 16 − 512 byte and so on. We have turned off all the generators at

the end of each interval and a new set of generators are started uniformly in the next

interval. This has created a sea-saw effect on the performance curve. There is a sharp

Chapter 4. Validation by Simulation 34

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.12: Instantaneous Throughput Node: 50 Window Size δ= 10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.13: Instantaneous Throughput Node: 50 Window Size δ= 20

Chapter 4. Validation by Simulation 35

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.14: Instantaneous Throughput Node: 50 Window Size δ= 50

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.15: Instantaneous Throughput Node: 75 Window Size δ= 10

Chapter 4. Validation by Simulation 36

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.16: Instantaneous Throughput Node: 75 Window Size δ= 20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.17: Instantaneous Throughput Node: 75 Window Size δ= 50

Chapter 4. Validation by Simulation 37

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.18: Instantaneous Throughput Node: 100 Window Size δ= 10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.19: Instantaneous Throughput Node: 100 Window Size δ= 20

Chapter 4. Validation by Simulation 38

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

η: 0.6
η: 0.7
η: 0.8

Figure 4.20: Instantaneous Throughput Node: 100 Window Size δ= 50

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t(

K
B

ps
)

Time

Adaptive
RTS Threshold: 0

RTS Threshold: 512

Figure 4.21: Comparison between Adaptive & Fixed RTS Threshold Scheme

fall in throughput at the end of each interval which rises again in the next new interval

as more and more traffic sources are started.

In Fig. 4.21 our proposed adaptive scheme is compared with the scheme that uses fixed

RTS Threshold value of 0 and 512 in an environment with 100 nodes and different packet

Chapter 4. Validation by Simulation 39

distributions. It is easy to see that our proposed adaptive scheme outperforms all such

non-adaptive schemes.

Chapter 5

Conclusion and Future Works

In this research we propose an adaptive scheme to effectively use RTS/CTS handshaking

in IEEE 802.11. We proposed a dynamic way to adjust the RTS Threshold based on

current packet distribution of the network. Through simulation we validate our proposal.

Evaluated results in NS-2 showed that the proposed adaptive scheme achieves better

result than the current IEEE 802.11 scheme. We further intend to experiment on mobile

networks.

40

Appendix A

NS2 The Network Simulator

A.1 What is NS2

NS is an object-oriented,discrete event simulator targeted at networking research. NS

provides substantial support for simulation of TCP, routing, and multicast protocols over

wired and wireless (local and satellite) networks. Later NS-2 (version 2) was developed

at UC Berkeley in C++ and OTcl (Object-oriented extension of Tcl)

A.2 Installing NS2

• Download NS2 version 2.31 from http://www.isi.edu/nsnam/ns/ns-build.html web-

site

• Unzip the tar archive

• Open Terminal and Go to the ns2 root directory. Here /ns-allinone-2.31

• Run ./install script

A.3 Set Path

After installation to set the path type the following contents.

o Export LD LIBRARY PATH=˜ns-allinone-2.31/otcl-1.13

o Export LD LIBRARY PATH=˜ns-allinone-2.31/ns-2.31/lib

o Export TCL LIBRARY=˜ns-allinone-2.31/tcl8.4.14/library

41

http://www.isi.edu/nsnam/ns/ns-build.html

Appendix A. The Network Simulator 42

To access NS command in any directory

o Go to ns2.31 directory under the ns-allinone-2.31

o Execute the command make install

To access setdest command in any directory

o Go to ns2.31/indep-utils/cmu-scen-gen/setdest directory under the ns-allinone-2.31

o Execute the command make install

A.4 Validation

* Open terminal in ˜ns-allinone-2.31/ns-2.31

* Run ./validate

* If installation and path variable setting are done properly, then the validation will be

successful

A.5 Scenario Generation

* This is done using the setdest command. There are two versions for setdest. Version

2 is most recently implemented and used.

* Version 2 signature of setdest command is

setdest -v < 2 > -n < nodes > -s < speedtype > -m < minspeed > -M < maxspeed > -t

< simulationtime > -P < pausetype > -p < pausetime > -x < maxX > -y < maxY >

o -v version number; Here 2

o -n number of nodes. Generated node number will be 0 to (n-1)

o -s speed type (uniform, normal); s=1 uniform speed from min to max; s=2

normal speed clipped from min to max

o -m minimum speed > 0

o -M maximum speed

o -P pause type (constant, uniform); P=1 constant pause; P=2 uniform pause [0,

2*p]

o -p pause time (a median if uniform is chosen)

o -x x dimension of space

o -y y dimension of space

* After running the command a scenario will be generated. Pipe the scenario in file

Appendix A. The Network Simulator 43

* Example

o setdest -v 2 -n 10 -m 10 -M 100 -t 20 -P 1 -p 10 -x 200 -y 400 > scen-exp1

* For Further Explanation: Go through the source code ˜ns-allinone-2.31/ns-2.31/indep-

utils/cmu-scen-gen/setdest/setdest.cc

A.6 CBR Traffic Generation

* This is done with the help of cbrgen.tcl file executing with ns command

* Open terminal in ˜ns-allinone-2.31/ns-2.31/indep-utils/cmu-scen-gen

* ns cbrgen.tcl [-type cbr—tcp] [-nn nodes] [-seed seed] [-mc connections] [-rate rate]

o -type traffic type (tcp, udp/cbr)

o -nn the highest node number(node number will be 0 to nn)

o -seed seed for random variable generation which is used to create random number

of source-destination pair

o -mc maximum number of connections; i.e.; source-destination pair

o -rate it is the inverse of the interval between packet transmission & should be <0

* After running the command a cbr traffic will be generated. Pipe the traffic in file

* Example

o ns cbrgen.tcl -type cbr -nn 9 -seed 1 -mc 10 -rate .25 > cbr-exp1

* For Further Explanation: Go through the source code ˜ns-allinone-2.31/ns-2.31/indep-

utils/cmu-scen-gen/cbrgen.tcl

A.7 Writing Simulation Generation File

* Download this sample tcl file or write a new tcl file.This sample should give some

idea of the different parameters that need to be configured for a typical simulation. A

wireless simulation is made up of some number of MobileNodes. Each such mobile node

needs some options to be configured like routing protocol, MAC layer protocol, antenna

type, channel type etc. A list of all parameters is given below.

o Channel type (Channel/WirelessChannel) ;# Set channel for wireless media

o Propagation model (Propagation/TwoRayGround);

o Interface type (Phy/WirelessPhy) ;

o MAC layer protocol (Mac/802 11) ;# The name of MAC layer protocol

o Routing protocol (AODV) ;# The name of routing protocol

o Interface Queue type (CMUPriQueue - for DSR) ;

Appendix A. The Network Simulator 44

o Interface Queue Length (50) ;# Queue length of a node for storing packets

o Antenna type (Antenna/OmniAntenna) ;

o LL type (LL) ;# Link Layer type

* Set the required parameters in the tcl file for the specific scenario and traffic. These

are the configuration parameters for the topology structure, like the dimensions of the

grid, number of nodes present etc. A list of all of them is given below for reference.

Example(For the previous scenario and traffic)

o set val(x) 200 ;# X dimension of the topography

o set val(y) 400 ;# Y dimension of the topography

o set val(ifqlen) 50 ;# max packet in ifq

o set val(seed) 0.0 ;

o set val(adhocRouting) AODV ;# The routing protocol

o set val(nn) 10 ;# how many nodes are simulated

o set val(cp) ”cbr-exp1” ;# the absolute or relative path of the traffic file

o set val(sc) ”scen-exp1” ;# the absolute or relative path of the scenario file

o set val(stop) 200.0 ;# the simulation time

* Turn on the trace for the required layers

Example

o -agentTrace ON {}
o -routerTrace ON {}
o -macTrace ON {}
o -movementTrace OFF{}

* For generating the trace file in new format, remove the comment or vice versa

$ns use-newtrace

* Set the output trace file with absolute or relative path

Example: set tracefd [open exp1.tr w]

A.8 Trace Generation

* Paste the tcl file to the ˜ns-allinone-2.31/ns-2.31/tcl/ex directory

* Open terminal in ˜ns-allinone-2.31/ns-2.31/tcl/ex

* Execute commandns < tclscript >

Appendix A. The Network Simulator 45

Example: ns sample.tcl

* If the simulation is successful, the desired trace file will be generated.

A.9 Trace Analysis

Explanation of new trace format

The new trace format as seen above can be can be divided into the following fields :

Event type: In the traces above, the first field (as in the older trace format) describes

the type of event taking place at the node and can be one of the four types:

s send

r receive

d drop

f forward

General tag: The second field starting with ”-t” may stand for time or global setting

-t time

-t * (global setting)

Node property tags: This field denotes the node properties like node-id, the level at

which tracing is being done like agent, router or MAC. The tags start with a leading

”-N” and are listed as below:

-Ni: node id

-Nx: nodes x-coordinate

-Ny: nodes y-coordinate

-Nz: nodes z-coordinate

-Ne: node energy level

-Nl: trace level, such as AGT, RTR, MAC

-Nw: reason for the event. The different reasons for dropping a packet are given below:

”END” DROP END OF SIMULATION

”COL” DROP MAC COLLISION

”DUP” DROP MAC DUPLICATE

”ERR” DROP MAC PACKET ERROR

”RET” DROP MAC RETRY COUNT EXCEEDED

”STA” DROP MAC INVALID STATE

”BSY” DROP MAC BUSY

Appendix A. The Network Simulator 46

”NRTE” DROP RTR NO ROUTE i.e no route is available.

”LOOP” DROP RTR ROUTE LOOP i.e there is a routing loop

”TTL” DROP RTR TTL i.e TTL has reached zero.

”TOUT” DROP RTR QTIMEOUT i.e packet has expired.

”CBK” DROP RTR MAC CALLBACK

”IFQ” DROP IFQ QFULL i.e no buffer space in IFQ

”ARP” DROP IFQ ARP FULL i.e dropped by ARP

”OUT” DROP OUTSIDE SUBNET i.e dropped by base stations on receiving

routing updates from nodes out-side its domain.

Packet information at IP level: The tags for this field start with a leading ”-I” and

are listed along with their explanations as following:

-Is: source address.source port number

-Id: dest address.dest port number

-It: packet type

-Il: packet size

-If: flow id

-Ii: unique id

-Iv: ttl value

Next hop info: This field provides next hop info and the tag starts with a leading

”-H”.

-Hs: id for this node

-Hd: id for next hop towards the destination.

Packet info at MAC level: This field gives MAC layer information and starts with a

leading ”-M” as shown below:

-Ma: duration

-Md: dsts ethernet address

-Ms: srcs ethernet address

-Mt: ethernet type

Packet info at ”Application level”: The packet information at application level

consists of the type of application like ARP,TCP, the type of adhoc routing protocol

like DSDV, DSR, AODV etc being traced. This field consists of a leading ”-P” and list

of tags for different application is listed as below:

-P arp Address Resolution Protocol. Details for ARP is given by the following tags:

Appendix A. The Network Simulator 47

-Po: ARP Request/Reply

-Pm: src mac address

-Ps: src address

-Pa: dst mac address

-Pd: dst address

-P dsr This denotes the adhoc routing protocol called Dynamic source routing. Infor-

mation on DSR is represented by

the following tags:

-Pn: how many nodes traversed

-Pq: routing request flag

-Pi: route request sequence number

-Pp: routing reply flag

-Pl: reply length

-Pe: src of srcrouting− >dst of the source routing

-Pw: error report flag

-Pm: number of errors

-Pc: report to whom

-Pb: link error from linka− >linkb

-P cbr Constant bit rate. Information about the CBR application is represented by the

following tags:

-Pi: sequence number

-Pf: how many times this pkt was forwarded

-Po: optimal number of forwards

-P tcp Information about TCP flow is given by the following subtags:

-Ps: seq number

-Pa: ack number

-Pf: how many times this pkt was forwarded

-Po: optimal number of forwards

This field is still under development and new tags shall be added for other applications

as they get included along the way.

A.10 Links to related sites

• Home: http://www.isi.edu/nsnam/ns/index.html

• Tutorial: http://www.isi.edu/nsnam/ns/tutorial/nsindex.html

• Download: http://www.isi.edu/nsnam/ns/ns-build.html

• Installation: http://teacher.buet.ac.bd/ashikur/ns2/

http://www.isi.edu/nsnam/ns/index.html
http://www.isi.edu/nsnam/ns/tutorial/nsindex.html
http://www.isi.edu/nsnam/ns/ns-build.html
http://teacher.buet.ac.bd/ashikur/ns2/

Appendix A. The Network Simulator 48

• Simulation: http://teacher.buet.ac.bd/ashikur/ns2/#sim

• Gnuplot: file: http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

 http://teacher.buet.ac.bd/ashikur/ns2/#sim
http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

Appendix B

Codes Modified

B.1 Mac Layer Modification

B.1.1 File mac-802 11.h

class MAC MIB {
.

.

.

public :

int Adaptive ;

int Window Size ;

int Window Start Time ;

double Alpha ;

int Fi l e Enab l e ;

int Array ;

int Print ;

int Cdf ;

double Ratio ;

.

.

.

public :

inl ine void setRTSThreshold (int RTS){RTSThreshold=RTS;}

} ;

class Mac802 11 : public Mac {
.

.

.

49

Appendix B. Appendix Codes Modified 50

friend class WindowTimer ;

.

.

.

protected :

void windowHandler (void) ;

.

.

.

private :

void window timer (void) ;

.

.

.

int f l a g ;

int time ;

o f stream summeryf i le ;

o f s tream ou t pu t f i l e ;

int output [1 0 0 0] ;

map<int , int> op ;

long t o t a l c oun t ;

int t o t a l r e c e i v e dby t e s ;

} ;

B.1.2 File mac-802 11.cc

Mac802 11 : : Mac802 11 () :

Mac() , phymib (this) , macmib (this) , mhIF (this) , mhNav (this) ,

mhRecv (this) , mhSend (this) ,

mhDefer (this) , mhBackoff (this) , mhBeacon (this) , mhProbe (this) ,

mhWindow (this)

{
.

.

.

for (int i =0; i< 1000 ; i++)

{
output [i]=0;

}
f l a g =1;

t o t a l r e c e i v e dby t e s =0;

char bu f f [5] ;

Appendix B. Appendix Codes Modified 51

s p r i n t f (buf f , ”sum”) ;

summeryf i le . open (buf f , i o s : : app) ;

summeryf i le . c l o s e () ;

s p r i n t f (buf f , ”%d” , index) ;

i f (macmib . F i l e Enab l e==1)

{
o u t p u t f i l e . open (buf f , i o s : : app) ;

o u t p u t f i l e . c l o s e () ;

}

i f (macmib . Adaptive != 0)

{
mhWindow . s t a r t (macmib . Window Start Time) ;

i f (macmib . Pr int) p r i n t f (”Adaptive Algorithm Started f o r :

%d with window %d .\n” , index , macmib . Window Size) ;

}

i f (macmib . Cdf) t o t a l c oun t = 0 ;

time = 10 ;

}

void

Mac802 11 : : windowHandler ()

{
window timer () ;

}

void

Mac802 11 : : window timer ()

{
stat ic int o ld max s i z e = 0 ;

stat ic int cd f = 0 ;

i f (! macmib . Cdf)

{

int i ;

int max = −1;

int max size = −1;

i f (macmib . Array){
for (i = 0 ; i < 1000 ; i++)

{
i f (output [i] > max)

{
max = output [i] ;

max s ize = i ;

Appendix B. Appendix Codes Modified 52

}
}

} else {
map<int , int > : : i t e r a t o r x ;

for (x=op . begin () ; x!=op . end () ; x++){
i f (x−>second > max)

{
max = x−>second ;

max s ize = x−> f i r s t ;

}
}

}
i f (macmib . Adaptive==1)max s ize+=4;

else i f (macmib . Adaptive==2)max size−=4;

i f (max size >8)

{
i f (o ld max s i z e) o ld max s i z e = int (

macmib . Alpha∗ o ld max s i z e + (1−macmib . Alpha)∗max size) ;

else

{
o ld max s i z e = max size ;

}
macmib . setRTSThreshold (o ld max s i z e) ;

i f (macmib . Pr int) p r i n t f (”RTSThreshold : %d f o r

%d .\n” ,macmib . getRTSThreshold () , index) ;

}
i f (macmib . Array) for (i = 0 ; i < 1000 ; i++)output [i] = 0 ;

else op . c l e a r () ;

}
else i f (macmib . Cdf)

{
f loat t o t a l p r ob = 0 . 0 ;

int i , prev=0, cur rent =0,RTS=0;

f loat prev prob =0.0 , cur rent prob =0.0;

double check ;

i f (macmib . Adaptive == 1) check = macmib . Ratio ;

else i f (macmib . Adaptive == 2) check = 1−macmib . Ratio ;

i f (macmib . Array)

{
i f (t o ta l count >0)

{
for (i =0; i <1000; i++)

{
i f (output [i] !=0)

{
cur rent=i ;

Appendix B. Appendix Codes Modified 53

t o t a l p r ob +=

(f loat) output [i] /

(f loat) t o t a l c oun t ;

cur rent prob=to t a l p r ob ;

i f (cd f)

{
p r i n t f (”%d %f \n” ,

current , t o t a l p r ob) ;

}

i f (to ta l p rob>=check) break ;

prev=current ;

prev prob=current prob ;

}
i f (to ta l p rob>=check) break ;

}

i f (macmib . Cdf == 1)RTS =int (prev+

(((check−prev prob)∗ (current−prev))/

(current prob−prev prob))) ;

else i f (macmib . Cdf == 2)RTS = current ;

}
}
else {

i f (t o ta l count >0){
map<int , int > : : i t e r a t o r current , prev ;

map<int , int > : : i t e r a t o r x ;

for (x=op . begin () ; x!=op . end () ; x++)

{
cur rent = x ;

t o t a l p r ob += (f loat)

x−>second /(f loat) t o t a l c oun t ;

cur rent prob=to t a l p r ob ;

i f (to ta l p rob>=check)break ;

prev = current ;

prev prob=current prob ;

}
RTS = int (prev−> f i r s t +

(((check−prev prob)∗ (current−>f i r s t −prev−> f i r s t))

/(current prob−prev prob))) ;

}

i f (macmib . Adaptive==1)RTS+=4;

else i f (macmib . Adaptive==2)RTS−=4;

i f (RTS>8)

{

Appendix B. Appendix Codes Modified 54

i f (o ld max s i z e) o ld max s i z e = int (

macmib . Alpha∗ o ld max s i z e + (1−macmib . Alpha)∗RTS) ;

else

{
o ld max s i z e = RTS;

}
macmib . setRTSThreshold (o ld max s i z e) ;

i f (macmib . Pr int) p r i n t f (”RTSThreshold : %d f o r %d .\n” ,

macmib . getRTSThreshold () , index) ;

}
i f (macmib . Array) for (i = 0 ; i < 1000 ; i++)output [i] = 0 ;

else op . c l e a r () ;

t o t a l c oun t =0;

}

mhWindow . s t a r t (double (macmib . Window Size)) ;

cd f++;

}

void

Mac802 11 : : r e cv t imer ()

{
.

.

.

i f (n e t i f −>node()−>energy model () &&

ne t i f −>node()−>energy model()−> a d a p t i v e f i d e l i t y ()) {
s r c = ETHER ADDR(mh−>dh ta) ;

n e t i f −>node()−>energy model()−>add neighbor (s r c) ;

}
i f (strcmp (pa ck e t i n f o . name(ch−>ptype ()) , ” cbr ”)==0)

{
char bu f f [5] ;

int s i z e =ch−>s i z e () ;

s p r i n t f (buf f , ”%d” , index) ;

i f (macmib . F i l e Enab l e==1)

{
o u t p u t f i l e . open (buf f , i o s : : app) ;

o u t p u t f i l e <<s i z e <<”\n” ;

o u t p u t f i l e . c l o s e () ;

}
i f (macmib . Array) output [s i z e]++;

else {
i f (op . f i nd (s i z e)==op . end ()) op . i n s e r t (make pair (s i z e , 1)) ;

else op [s i z e]++;

}
i f (macmib . Cdf) t o t a l c oun t++;

.

Appendix B. Appendix Codes Modified 55

.

.

}
.

.

.

}

void

Mac802 11 : : recvDATA(Packet ∗p)

{
.

.

.

i f (strcmp (pa ck e t i n f o . name(ch−>ptype ()) , ” cbr ”)==0)

{

t o t a l r e c e i v e dby t e s+=s i z e ;

double now = Scheduler : : i n s t anc e () . c l o ck () ;

i f (now>=time){
char bu f f [8 0] ;

s p r i n t f (buf f , ”%d” , time) ;

summeryf i le . open (buf f , i o s : : app) ;

summeryfi le<<t o t a l r e c e i v edby t e s <<”\n” ;

summeryf i le . c l o s e () ;

time+=10;

t o t a l r e c e i v e dby t e s = 0 ;

}
}
.

.

.

}

B.2 Linking TCL variables to C++

There comes time, when one has to set parameter values while running simulation in

NS2. This can be easily done by linking a TCL variable to a C++ variable and set the

value of TCL variable which will be later on the value of C++ variable. For instance

we want to set the window size by a parameter. For this we will use a TCL variable

Window Size and will set its value shown below.

Appendix B. Appendix Codes Modified 56

wireless.tcl

.

.

.

Mac/802_11 set RTSThreshold_ 1000

Mac/802_11 set Adaptive_ 1

Mac/802_11 set Cdf_ 1

Mac/802_11 set Ratio_ 0.6

Mac/802_11 set Window_Size_ 50

Mac/802_11 set Window_Start_Time_ 50

Mac/802_11 set Alpha_ .6

Mac/802_11 set File_Enable_ 0

Mac/802_11 set Array_ 1

Mac/802_11 set Print_ 0

.

.

.

Next comes linking this variable. Let we want to link this variable to a C++ variable

Window Size.

mac-802 11.c

MAC MIB : :MAC MIB(Mac802 11 ∗parent)

{
.

.

.

parent−>bind (”Adaptive ” , &Adaptive) ;

parent−>bind (”Window Size ” , &Window Size) ;

parent−>bind (”Window Start Time ” , &Window Start Time) ;

parent−>bind (”Alpha ” , &Alpha) ;

parent−>bind (” F i l e Enab l e ” , &Fi l e Enab l e) ;

parent−>bind (”Array ” , &Array) ;

parent−>bind (” Pr in t ” , &Print) ;

parent−>bind (”Cdf ” , &Cdf) ;

parent−>bind (” Rat io ” , &Ratio) ;

}

Appendix B. Appendix Codes Modified 57

As we have worked with MAC layer we used the MAC MIB function of mac802 11.cc

file. Here the code to bind the Window Size variable to Window Size variable is shown.

During simulation Window Size will have value that is set to Window Size .

B.3 Random Packet Densities in Traffic

To generate packets of random sizes we have used Random Number Generators of TCL.

We have modified the cbrgen.tcl for this purpose. In the code rng is a uniform random

number generator declared before. We have declared a variable x which will have a

value uniformly distributed between 0 and 3. Then is variable is used to set value of

pks 128,256,384 or 512. Variable pks is used as the packet size. There are many types

of random number genertors. Help for them can find in documentation of NS2.

cbrgen.tcl

proc create-cbr-connection { src dst }

{

.

.

.

set x_ [$rng integer 4]

set pks [expr 128 * [expr $x_ + 1]] ;

.

.

.

}

B.4 Parameters in TCL

Some times we want to pass a parameter value to a TCL script. As for example, the

cbrgen.tcl script accepts rate as parameter. We would like to add another parameter mt.

To do it, 1st add the code ’set opt(mt) 1’ It declares that the default value of mt will be

1. There is a part in the script ’proc getopt argc argv’. This procedure will extract all

the parameters. So pass the value by using −mt as the last parameter. Then you can

use it with the variable $opt(mt).

cbrgen.tcl

Appendix B. Appendix Codes Modified 58

set opt(mt) 1

proc usage {}

{

.

.

.

global argv0

puts "\nusage: $argv0 \[-type cbr|tcp\] \[-nn nodes\]

\[-seed seed\] \[-mc connections\] \[-rate rate\] \[-mt max_time\]\n"

.

.

.

}

proc create-cbr-connection { src dst }

{

.

.

.

global rng cbr_cnt opt defaultRNG

set stime [$rng uniform 0.0 $opt(mt)]

.

.

.

}

.

.

.

for {set i 0} {$i < $opt(nn) } {incr i}

{

.

.

.

#set dst [expr ($i+1) % [expr $opt(nn) + 1]]//wrong

Appendix B. Appendix Codes Modified 59

set dst [expr ($i+1) % [expr $opt(nn)]]

.

.

.

#set dst [expr ($i+2) % [expr $opt(nn) + 1]]//wrong

set dst [expr ($i+2) % [expr $opt(nn)]]

.

.

.

}

B.5 Static Network Generation

We simulated our experiments in static environments. To accomplish this, we generated

scenario files with various number of static nodes. Two parameters of ”setdest” com-

mand were used for this. They are “simulation time” & “pause time”. If “pause time”

is greater than ”simulation time”, network remains static.

Appendix C

IEEE 802.11 MAC in NS2

IEEE 802.11 MAC protocol is supported in NS2. The codes for the protocol can

be found in ˜/ns-allinone-2.31/ns-2.31/mac/mac-802 11.cc and ˜/ns-allinone-2.31/ns-

2.31/mac/mac-802 11.h

C.1 Class States

• PHY MIB phymib : physical layer management information base (MIB) such

as the minimal and maximal size of contention window (CWMin, CWMax), the

slot time for each slot in contention wind(SlotTime), the SIFS, DIFS, PIFS, EIFS,

etc.

• MAC MIB macmib : mac layer MIB such as the threshold for packet size over

which the RTS/CTS would be adapted (RTSThreshold), STA short or long retry

limit (ShortRetryLimit, LongRetryLimit) failure counters, etc.

• bss id : for network of infrastructured model.

• basicRate : transmission rate for control packets such as RTS, CTS, ACK and

Broadcast.

• dataRate : transmission rate for mac layer data packets.

• mhNav : NAV (network allocating vector) counting down timer.

• mhRecv : receiving timer.

• mhSend : sending timer.

• mhDefer : defer timer.

60

Appendix C. IEEE 802.11 MAC in NS2 61

• mhBackoff : backoff timer.

• nav : NAV in seconds.

• rx state : receiving or incoming state (MAC RECV or MAC IDLE).

• tx state : sending or outgoing state.

• tx active : transmitter is active or not.

• Packet* pktRTS : outgoing RTS packet when sending RTS.

• Packet* pktCTRL : outgoing control packet (CTS or ACK).

• Packet* pktTx : the packet needed to be sent out such as data packet or any

other packet from upper layer.

• cw : current size of contention window.

• ssrc : current STA short retry counter.

• slrc : current STA long retry counter.

C.2 Important Functions

C.2.1 recv()

DOWN

The recv() function is called whenever a packet is received from either an upper or lower

layer. The packet to be sent is received by the recv() function. The recv() function is

also called when a packet comes from the channel, recv() checks the direction field in

the packet header. If the direction is DOWN, meaning the packet came from an upper

layer, the packet is then passed on to the send() function and return from recv().

UP

If the packet is received from a lower layer the network interface here, then the first

check will be skipped. At this point the phy has just received the first bit of the

incoming packet, but the MAC can’t do anything with the packet until the whole packet

is received. If the packet is received while the MAC is currently transmitting another

packet, then the received packet would be ignored meaning the error flag in the packet’s

header is set. If the MAC is not currently receiving any packets, then the rx state is

Appendix C. IEEE 802.11 MAC in NS2 62

changed to RECV and checkBackoffTimer is called from setRxState(). Afterwards, the

incoming packet is assigned to pktRx and the receive timer is started for the txtime()

of the packet.If the MAC was already receiving a packet when this packet arrived, it

will compare the received power of the new packet with the old packet. If the power

of the new packet is smaller than the old packet by at least the capture threshold, the

new packet will be ignored (captured) and the capture() function is called. If the power

levels of the two packets are too close though, there will be a collision and control will

transfer to collision(), which will drop the arriving packet. The original packet won’t be

dropped until it’s reception is complete. Control will return to the MAC whenever the

receive timer expires, calling recvHandler(), which in turns goes right to recv timer().

C.2.2 sendDATA()

This function builds the MAC header for the data packet. First it checks that there is no

packet assigned in pktTX variable. Then it increases the size of the packet, setting the

type as data, and subtype as data. The packet should now have a complete MAC header

attached to it. The function then stores the txtime of the packet, which is computed by

the txtime() function. By txtime, we basically mean the size of the packet multiplied

by the Data rate. This calculation is done twice this first time is just a waste. It’s

calculated again because a different value for the data rate is used if the packet happens

to be a broadcast packet. Also, if the packet is not a broadcast packet, the duration

field in the MAC header is computed. By duration, we mean the amount of time this

communication still needs the channel after the data packet has been transmitted. For

the case of a data packet, this corresponds to the amount of time to transmit an ACK

plus a short inter-frame spacing. If the packet happens to be broadcast, this field is

set to zero (no ACKs for broadcast packets). Now, the MAC has finished building the

MAC header for the packet and finally assigns the internal variable pktTx to point to

the packet we’ve been working on. This is essentially a way of storing the packet to be

transmitted in a local buffer in the MAC. Now, the code returns to the send() function.

C.2.3 sendRTS()

This function is called from send().This function is in charge of creating an RTS packet

with the specified destination in conjunction with the data packet the MAC is trying to

send. The first thing it does is check the size of the packet against the RTSThreshold. If

the packet is smaller (or is broadcast) then no RTS is sent before the data is transmitted

(the RTS/CTS mechanism is not used). In this case, the function simply returns control

back to the send() function. Otherwise, a brand new packet is created (actually done

Appendix C. IEEE 802.11 MAC in NS2 63

in the first line of the function) and it’s fields are set appropriately, the type is set as a

MAC packet. A rts frame structure is used to fill in the rest of the packet header and

the appropriate values are put in the rts fields. The destination field is filled in with the

parameter passed to the function and the rf ra is filled in with the MAC’s address. The

duration field is also calculated as the time to transmit a CTS, the data packet (pktTx)

and an ACK plus 3 sifs. After the RTS has been constructed, the internal state variable

pktRTS is assigned a pointer to the new RTS. After this, control is returned to the

send() function.

C.2.4 sendACK()

This function is responsible for creating an ACK packet to be sent in response to a data

packet. It checks that no other packets are previously assigned to pktTRL variable.

The packet is created and all the fields are filled in with the obvious values. The duration

field is set to zero indicating to other nodes that once this ACK has completed, they

don’t need to defer to another communication. Once the packet has been successfully

built, pktCTRL is pointed to the new ACK and control returns to recvDATA().

C.2.5 deferHandler()

This function is called when the defer timer has expired. When this happens, this means

the node has waited enough time before transmission to lessen the chance of collision

and will now attempt to transmit a packet. Accordingly, the first thing the function does

is assert that there is either a control, RTS, or data packet waiting to be transmitted.

The function then calls check pktCTRL(), and then makes sure the backoff timer is not

currently running. Afterwards, it calls check pktRTS() and check pktTx(). If any of

these check functions returns a value of zero, the defer handler stops, as this indicates

that the check function has succeeded in transmitting that particular kind of packet.

Therefore, the actual packet transmission is handled by one of these check functions.

C.2.6 check pktRTS()

This function, like the other two check functions, is responsible for transmitting a

packet in this case, an RTS packet. First it checks that backoff timer is not busy. If

there is no RTS packet ready to send, i.e. pktRTS is null, then the function simply

returns with a value of -1, indicating that it did not send a packet. There is an oddly

placed switch statement here presumably in order to detect an improperly built RTS

packet. Before the RTS is sent, the channel is checked. If it is sensed to be busy,the

Appendix C. IEEE 802.11 MAC in NS2 64

contention window (cw) is doubled using the inline function inc cw() and the backoff

timer is started again. The function therefore returns without transmitting a packet if

the channel is busy. If the channel is idle, the tx state of the MAC is set to RTS and

the function checkBackoffTimer() is invoked. Next, the timeout value is calculated so

that the MAC will know how long to wait for a CTS to be returned. Finally the function

transmit() is called with arguments of the RTS packet and timeout value. At this point,

the phy has begun transmission of the RTS packet.

C.2.7 check pktTX()

This function, like the other two check functions, is responsible for transmitting a

packet in this case, the actual data packet. The first thing the function dose is assert

that backoff is not busy.If there is no data packet waiting to be sent (pktTx is null),

then the function returns with a value of -1, indicating that nothing was transmitted.

In the switch statement if the channel is sensed to be busy, sendRTS is called. This

means that despite the RTS/CTS exchange, another node is using the channel (possibly

due to mobility).Additionally, the contention window (cw) is doubled using the inline

function inc cw() and then the backoff timer is started so that the MAC will remain

idle until the other node has completed transmission and return. If the channel is idle,

the tx state is set to MAC SEND and the checkBackoffTimer function is invoked from

setTxState(). The timeout value is calculated in two ways, depending on whether or

not the data packet is broadcast. If not, the timeout is how long the MAC should wait

before it decides an ACK wasn’t received. If the packet is broadcast, the timeout is

simply the transmission time of the packet because no ACKs will be sent in conjunction

with a broadcast packet. Finally, the function transmit() is invoked with arguments of

the data packet and the calculated timeout value.

C.2.8 transmit()

This function takes two arguments, a packet and a timeout value. It sets a flag variable,

tx active , to one to indicate that the MAC is currently transmitting a packet. The

function then performs a check because if it is an ACK being transmitted then it is

possible that the node could be receiving a packet, in which case that packet would

be missed & so disarded. This next block checks if the MAC is currently receiving

a packet if so, marks the packet being received as having errors. Next, the packet is

actually passed down to the network interface (WirelessPhy class) which is pointed to

by downtarget . Actually, only a copy of the packet is sent down in case there needs to

be a retransmission. Finally, two timers are started the send timer is started with the

Appendix C. IEEE 802.11 MAC in NS2 65

timeout value, which will alert the MAC that the transmission probably failed. Also,

the interface timer(mhIF) is started with the txtime() of the packet when this timer

expires, the MAC will know that the phy has completed the transmission of the packet.

C.2.9 send timer()

This function is called at the expiration of the mhSend . This timer expires after amount

of time calculated as timeout in the corresponding check function the expiration of this

timer means slightly different things depending on which kind of packet was sent. In a

switch statement, the MAC checks the value of tx state to find out the kind of packet

that was most recently sent and then handles each packet differently. If the last packet

sent was an RTS, the expiration of the timer means a CTS wasn’t received, presumably

because the RTS collided or the receiving node is deferring. The MAC responds by

attempting to retransmit the RTS in the function RetransmitRTS().

If the last packet sent was a CTS packet, the expiration of the timer means that no data

packet was received. This is an infrequent event occurring if the CTS packet collided or

if the data packet was in error. The MAC handles this by simply resetting itself to an

idle state. This involves freeing the CTS packet stored in pktCTRL .

If the last packet sent was a data packet, the expiration of the timer means that an ACK

was not received. The MAC handles this situation by calling RetransmitDATA().

Finally, if the last packet sent was an ACK, the expiration of the timer simply means

that the ACK has been transmitted, as no response is expected from an ACK. The MAC

frees the ACK packet pointed to by pktCTRL .

After each case has been handled and a packet has possibly been prepared for retransmis-

sion, the function tx resume() is given control. If a packet is going to be retransmitted,

the backoff timer has already been started with an increased contention window.

C.2.10 RetransmitData()

This function is called when an ACK is not received in response to a data packet being

sent. If the data packet was a broadcast packet, an ACK shouldn’t be expected and

so the data packet is treated as being successfully transmitted and so is freed and the

congestion window reset. The backoff counter is started. Two separate retry counts are

maintained depending on whether or not an RTS is being used for this data packet. If

an RTS is not being used, the short retry limit is used, otherwise the long retry limit is

used as a threshold. If the retry count has exceeded the threshold, then the data packet

is discarded using the discard() function and the retry count and congestion window

are reset. If the retry count has not been exceeded, the data packet is prepared for

Appendix C. IEEE 802.11 MAC in NS2 66

retransmission by incrementing a retry field in the mac header, doubling the congestion

window, and then starting the backoff timer. This means control will eventually return

to backoffHandler.

C.2.11 tx resume()

This function is called when the MAC is getting ready to send a packet but needs to

set some timers.The first thing the function does is assert that mhSend and mhDefer

is not busy.If a control packet (CTS or ACK) is waiting to be sent, this function simply

starts the defer time for a sifs amount of time. This is because a node is supposed

to wait a brief period of time before transmitting. If an RTS packet is waiting to be

sent, then the MAC makes sure the backoff timer isn’t currently busy and bugFix timer

is false then the MAC will wait to start the defer timer. If bugFix timer is true then

backoff start with difs time. If the backoff timer isn’t busy the defer timer is started for

a random time in the interval [0,cw) plus a difs time. If a data packet is next to be

sent, and MAC isn’t currently backing off, then the defer timer is started for the data

packet. If an RTS wasn’t used for this packet, then the defer timer is set for a random

value in the interval [0,cw] plus a difs time, but if an RTS was used, the MAC will

only defer for a sifs time. This is because if an RTS was used, then the channel has

already been reserved for this MAC and it shouldn’t need to worry about collisions. If

there are no packets waiting to be sent, but the callback is defined, then it is handled,

corresponding to a successfully completed packet transmission. Finally, the tx state is

set to idle by setTxState().

C.2.12 collision()

The collision handler first checks the rx state variable and sets it to MAC COLL in case

this is the first collision during the current packet. If a third packet collides, rx state

will already be MAC COLL. Then, the MAC calculates how much longer the new packet

will last and how much longer the old packet will last. If the new packet will last longer,

then the MAC makes the new packet pktRx and resets the receive timer, mhRecv .

In this case the old packet is discarded here, but if the old packet will last longer then

the new packet is simply discarded and pktTx doesn’t change. So at the end of this

function, the colliding packet that would have completed first has been discarded and

rx state is set to MAC COLL.

Appendix C. IEEE 802.11 MAC in NS2 67

C.2.13 recv timer()

This is the receive timer handler, called when mhRecv expires (though indirectly though

RecvHandler). The expiration of the receive timer means that a packet has been fully

received and can now be acted upon.

The first thing the function does is assert that there is either a rx state equals MAC RECV

or rx state equals MAC COLL.

First, the MAC checks to see if it’s currently transmitting a packet by checking the

flag, tx active . If so, the MAC wouldn’t not have even heard the packet so it is just

discarded (without updating NAV) and goto Done.

Next, the rx state is checked to see if there was a collision during this packet, rx state

equals MAC COLL. If so, then pktRx is the colliding packet that lasted longest and

now needs to be discarded. The NAV is also set for an eifs time, which is the amount

of time the MAC must wait after a collision and then goto Done.

The MAC then checks the packet for errors, and discards the packet if any were detected.

Again, the NAV is set for eifs time after the error packet is finished being received.

The next check the MAC performs is if the packet is actually destined for itself if not,

the MAC updates the NAV for the value in the duration field in the MAC header (not

necessary just the txtime of the packet). This is of course so that the MAC doesn’t

attempt to transmit while other nodes are using the channel.

And finally, the last check performed is address filtering, where all packets that are not

destined for the current node are discarded. The NAV would have already been updated

so there’s no need to do anything else with the packet.

Now the MAC decides what to do based on what kind of packet it just received. If

the packet is of MAC Type Management, it’s simply dropped. If it’s an RTS packet,

recvRTS() is called, if CTS or ACK, then recvCTS() or recvACK() is called. And not

surprisingly, if it’s a data packet, then recvDATA() is called. After this, pktRx is set

to zero and control to given to rx resume().

C.2.14 recvCTS()

This function is called by the recv timer after a full CTS packet has been received,

meaning the MAC can now send it’s data. First it checks if the tx state is RTS, if not

we should not have received CTS so the packet is discarded & the function returned.Since

the MAC has no use for the RTS packet it just transmitted, it’s freed and pktRTS is

set to zero. The send timer is stopped. Control then goes straight to tx resume(), which

sets the defer timer, and then control finally returns back to recv timer().

Appendix C. IEEE 802.11 MAC in NS2 68

C.2.15 recvACK()

This function is called by the recv timer after a full ACK packet has been received,

indicating a successful data transmission. First, the MAC checks that it really did just

sent a data packet (tx state == MAC SEND) and discards the ACK if it didn’t. Then

the send timer is stopped The MAC now knows that it just succesfully transmitted it’s

data packet, so it frees pktTx and sets it to zero.The MAC then resets the appropriate

retry count, short if an RTS wasn’t used, long if it was. Also, the congestion window

is reset and the MAC starts its backoff timer so it won’t just immediately send again.

Control then goes to tx resume() and then back to recv timer(). In tx resume(), since

there are no packets ready to send, the callback will be invoked, effectively telling the

interface queue to send down another packet for transmission.

C.2.16 rx resume()

This simple function is called after recv timer has completed. All it does is set the

rx state to idle which eventually invokes checkBackoffTimer().

C.2.17 backoffHandler()

This function is called whenever the backoff timer expires. This function first checks to

see whether there is a control packet (CTS or ACK) waiting to be sent. If so, it makes

sure that the MAC is either sending the packet or deferring before sending the packet.

If there was no control packet, check pktRTS() is called. If there was no RTS packet,

then check pktTx() is called. This means, that at the expiration of the backoff timer,

an RTS or a data packet will be transmitted if either is waiting.

C.2.18 Miscellaneous Functions

• set nav(u int16 t): set the NAV according to the given unsigned short integer

value, times s; if the existing NAV is later than this value, ignoring it, otherwise,

update the NAV;

• is idle(void): checking the receiving state, sending state and NAV, if any of them

is not idle,then the state of MAC is not idle;

• inc cw(): increasing number of slots in the contention window when backoff;

IEEE 802.11 standard specifies it from 63 to 1023, each time increasing by an

order of 2;

Appendix C. IEEE 802.11 MAC in NS2 69

• rst cw(): reseting the contention window to the basic setting, 63 slots;

• sec(double): given an integer value of s, return its equivalent value in seconds;

• usec(double): given a double value of seconds, return its integer value of s

• txtime(Packet*): return the transmission time eld in common header hdr cmn::txtime();

C.3 Timers

Timers are defined in the files mac/mac-timers.h/cc while the handlers (functions called

when the timer expires) are in mac-802 11.cc.

• IFTimer The interface timer keeps tracks of how long the interface will be in

transmit mode. This is only the time when the interface is actively transmitting

bits into the air. The handler for this timer is txHandler(). Probably the simplest

timer used by the MAC layer.

• NavTimer Started at the reception of a packet for the length of time indicated

in the duration field of the MAC header. Most 802.11 frames carry a duration

field, which can be used to reserve the medium for a fixed time period. The

NAV is a timer that indicates the amount of time the medium will be reserved,

in microseconds. Stations set the NAV to the time for which they expect to use

the medium, including any frames necessary to complete the current operation.

Other stations count down from the NAV to 0. When the NAV is nonzero, the

virtual carrier-sensing function indicates that the medium is busy; when the NAV

reaches 0, the virtual carrier-sensing function indicates that the medium is idle.

Calls navHandler() on expiration.

• RxTimer Started when the first bit of a packet is received and set for the length

of time the packet will require to be completely received. This timer is needed

because in simulation the entire packet is available as soon as the first bit arrives,

but the MAC should not access the packet until it would have been completely

received in reality. In the case of a packet collision, the receive timer is reset to

expire at the end of the last colliding packet. The timer indirectly calls recv timer()

on expiration by calling recvHandler() first.

• TxTimer Indicates the time by which ACK/CTS should have been received. The

TxTimer (mhSend) is started when a packet is transmitted by the transmit()

function. Each type of packet has an expected response, for example, an RTS

packet expects a CTS packet to follow. The timer is therefore stopped when a

Appendix C. IEEE 802.11 MAC in NS2 70

CTS, data, or ACK packet is received. The timer is not started on transmission

of an ACK packet as there is no response expected. On expiration, send timer()

is called indirectly by first calling the function sendHandler().

C.4 Flow of Transmission

Node A tries to send a packet to Node B. Follow each tree in Depth First Order to get

the flow.

Appendix C. IEEE 802.11 MAC in NS2 71

C.4.1 Successfull Transmission

A sending RTS

A:recv()

A:send()

A:sendDATA()

A:sendRTS()

A:mhDefer_.start()

A has started defer

timer. After the timer

expires deferHandler(

is called

A: deferHandler(

A: check_pktCTRL()

A: check_pktRTS()

A:transmit()

A:mhsend_.start()

A has started the send

timer which will be

stoped by recvCTS after

successfully receiving

the CTS

B receiving RTS and

sending CTS

B:recv()

B:mhRecv_.start()

B has started receive

timer. After the timer

expires recvHandler()

is called

B: recvHandler()

B:recv_Timer()

B:recvRTS()

B:sendCTS()

B: tx_resume()

B:mhDefer_.start()

B has started defer

timer. After the timer

expires deferHandler()

is called

B: deferHandler()

B: check_pktCTRL()

B:transmit()

B:mhsend_.start()

B:rxResume()

B has started the send

timer which will be

stopped by recvDATA

after successfully

receiving the DATA

Figure C.1: Successfull transmission: Part1

Appendix C. IEEE 802.11 MAC in NS2 72

A receiving CTS and

sending Data

A:recv()

A:mhRecv_.start()

A has started receive

timer. After the timer

expires recvHandler() is

called

A:recvHandler()

A:recv_Timer()

A:recvCTS()

A:mhSend_.stop()

A: tx_resume()

A:mhDefer_.start()

A has started defer

timer. After the timer

expires deferHandler() is

called

A: deferHandler()

A: check_pktTX()

A:transmit()

A:mhsend_.start()

A:rxResume()

A has started the send

timer which will be

stoped by recvACK after

successfully receiving

the ACk

B receiving Data and

sending ACK

B:recv()

B:mhRecv_.start()

A has started receive

timer. After the timer

expires recvHandler() is

called

B: recvHandler()

B:recv_Timer()

B:recvDATA()

B:mhSend_.stop()

B:sendACK()

B: tx_resume()

B:mhDefer_.start()

B has started defer timer.

After the timer expires

deferHandler() is called

B: deferHandler()

B: check_pktCTRL()

B:transmit()

B:mhsend_.start()

B:uptarget_->recv()

B:rxResume()

B:send_timer()

B:txResume()

As after sending the ACK B

gets no reply so its send

timer will be

up

Figure C.2: Successfull transmission: Part2

Appendix C. IEEE 802.11 MAC in NS2 73

A receving ACK

A:recv()

A:mhRecv_.start()

A has started receive

timer. After the timer

expires recvHandler() is

called

A: recvHandler()

A:recv_Timer()

A:recvACK()

A:mhsend_.stop()

A:TxResume()

A:rxResume()

After receiving the ACK

the conversation is

complete and A can now

send or receive the next

packet.

Figure C.3: Successfull transmission: Part3

Appendix C. IEEE 802.11 MAC in NS2 74

C.4.2 RTS RE-Transmission

A transmitting RTS

A:recv()

A:send()

A:sendDATA()

A:sendRTS()

A:mhDefer_.start()

A has started defer timer. After the timer expires

deferHAndler() is called

A: deferHandler()

A: check_pktCTRL()

A: check_pktRTS()

A:transmit()

A:mhSend_.start()

A has started send timer. As it doesn’t receive the CTS

the timer expires and the send_timer() is called.

A: send_timer()

A:RetransmitRTS()

A:mhBackoff_.start()

A has started back off timer. After the timer expires

backoffHandler() is called

A: backoffHandler()

A: check_pktRTS()

A:transmit()

A:mhSend_.start()

A:txResume()

The send timer is started again, if the timer expires

again, handler will be called again. If A receives CTS

the timer will expire and transmission flow goes on.

Figure C.4: RTS Retransmission

Appendix C. IEEE 802.11 MAC in NS2 75

C.4.3 Data RE-Transmission

A sending RTS

A:recv()

A:send()

A:sendDATA()

A:sendRTS()

A:mhDefer_.start()

A has started defer

timer. After the timer

expires deferHandler()

is called

A: deferHandler()

A: check_pktCTRL()

A: check_pktRTS()

A:transmit()

A:mhsend_.start()

A has started the send

timer which will be

stoped by recvCTS after

successfully receiving

the CTS

B receiving RTS and

sending CTS

B:recv()

B:mhRecv_.start()

B has started receive

timer. After the timer

expires recvHandler() is

called

B:recvHandler()

B:recv_timer()

B:recvRTS()

B:sendCTS()

B:tx_resume()

B:mhDefer_.start()

B has started defer

timer. After the timer

expires deferHandler() is

called

B:deferHandler()

B:check_pktCTRL()

B:transmit()

B:mhsend_.start()

B:rx_resume()

B has started the send

timer which will be

stoped by recvDATA after

successfully receiving

the DATA

Figure C.5: Data Retransmission: Part1

Appendix C. IEEE 802.11 MAC in NS2 76

A receiving CTS and trying to send Data

A:recv()

A:mhRecv_.start()

A has started receive timer. After the timer expires
recvHandler() is called

A: recvHandler()

A:recv_Timer()

A:recvCTS()

A:mhSend_.stop()

A:tx_resume()

A:mhDefer_.start()

A has started defer timer. After the timer expires

deferHandler()is called

A:deferhandler()

A:check_pktTX()

A:transmit()

A:mhsend_.start()

A has started send timer. As it doesn’t receive the ACK

the timer expires and the sendtimer() is called.

A:sendtimer()

A:RetransmitDATA()

A:mhBackoff_.start()

A has started backoff timer. After the timer expires
backoffHandler() is called

A:backoffHandler()

A:check_pktRTS()

A:check_pktTX()

A:transmit()

A:mhsend_.start()

A:txResume()

A:rxResume()

The send timer is started again, if the timer expires

again, handler will be called again. If A receives ACK

the timer will expire and transmission flow goes on.

Figure C.6: Data Retransmission: Part2

Appendix D

GNUPlot

To visualize our simulation results and compare proposed adaptive RTS Threshold

scheme with existing static mechanism, we used Gnuplot as an interactive plotting pro-

gram which helped us with its manifold apts. Gnuplot version 4.2 was available and free

to use. Below is a brief description of this software.

D.1 Description

Gnuplot is a command-driven interactive function plotting program. If files are given,

gnuplot loads each file with the load command, in the order specified. Gnuplot exits

after the last file is processed. Here are some of its features are,

1. Plots any number of functions, built up of C operators, C library functions, and

some things C doesnt have like **, sgn(), etc. Also support for plotting data files,

to compare actual data to theoretical curves.

2. User-defined X and Y ranges (optional auto-ranging), smart axes scaling, smart

tic marks.

3. Labelling of X and Y axes.

4. User-defined constants and functions.

5. Support for many output devices and file formats

6. Shell escapes and command line substitution.

7. Load and save capability.

77

Appendix D. GNUPlot 78

8. Output redirection.

All computations performed in the complex domain. Just the real part is plotted by

default, but functions like imag(), abs() and arg() are available to override this.

Example:

• set x-axis label: set xlabel “X AXIS LABEL”

• set y-axis label: set ylabel “Y AXIS LABEL”

• set legend position: set key [left/right top/bottom]

• set for greek letters: set terminal postscript eps enhanced

• set output file: set output “FILE.eps”

• plot from a file: plot “FILE” with [lines/points/linespoints]

• plot with different ratio(for example 2:3): plot “FILE” using ($1 × 2) : ($2 × 3)

with lines

• put greek letter in text: “.../Symbol a...” for alpha, “.../Symbol h...” for eta

Helping Site: http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

http://t16web.lanl.gov/Kawano/gnuplot/index-e.html

Bibliography

[1] Darpa home page. URL http://www.darpa.mil.

[2] Ietf manet working group information. URL www.ietf.org/html.charters/

manet-charter.html.

[3] Y.D. Lin and Y.C. Hsu. Multi-hop cellular: A new architecture for wireless com-

munications. In IEEE INFOCOM, pages 1273–1282, 2000.

[4] R. Pickholtz A.N. Zadeh, B. Jabbari and B. Vojcic. Self organizing packet radio ad

hoc network with overlay. IEEE Communications Magazine, 40(6):140–157, June

2002.

[5] P. Chatzimisios and A. C. Boucouvalas. Improving performance through opti-

mization of the RTS/CTS mechanism in IEEE 802.11 wireless lans. In Interna-

tional Conference on Communication Systems, Networks and Digital Processing

(CSNDSP 2004), pages 375–378, 2004.

[6] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination

function. IEEE Journal of Selected Areas in Communications, 18(3):535–547, 2000.

[7] A.C. Boucouvalas P. Chatzimisios and V. Vitsas. Packet delay analysis of the IEEE

802.11 MAC protocol. IEEE Electronic Letters, 39(18):1358,1359, 2003.

[8] S. Xu and T. Saadawi. Revealing the problems with 802.11 medium access control

protocol in multi-hop wireless ad hoc networks. Computer Networks, 38(4):531–548,

2002.

[9] M. Gerla K. Xu and S. Bae. Effectiveness of RTS/CTS handshake in IEEE 802.11

based ad hoc networks. Ad Hoc Networks Journal, 1(1):107–123, 2003.

[10] J.-H. Chen F.Ye S.-T. Sheu, T. Chen. The impact of rts threshold on IEEE 802.11

mac protocol. In IEEE International Conference on Parallel Distributed Systems

(ICPADS), pages 267–272, 2002.

79

http://www.darpa.mil
www.ietf.org/html.charters/manet-charter.html
www.ietf.org/html.charters/manet-charter.html

Bibliography 80

[11] Shiqi Wu-Wei Guo Shaohu Yan, Yongning Zhuo. Adaptive RTS threshold for max-

imum network throughput in IEEE 802.11 DCF. volume 5284, pages 332–343,

2004.

[12] Bai long Xiao Fei Huang Jun Liu, Wei Guo. RTS threshold adjustment algorithm

for IEEE 802.11 DCF. In 6th International Conference on ITS Telecommunications,

pages 654–658, 2006.

[13] Naoki Nakamura Kazuhide Koide Atushi Takeda Norio Shiratori Mostafa Mjidi,

Debasish Chakraborty. A new dynamic scheme for effcient RTS thresholdhandling

in wireless networks. In 22nd International Conference on Advanced Information

Networking and Applications, pages 734–740, 2008.

[14] Yen-Cheng Kuan Huei-Jiun Ju, Izhak Rubin. An adaptive RTS/CTS control mech-

anism for IEEE 802.11 MAC protocol. Vehicular Technology Conference, 2003.

VTC 2003-Spring. The 57th IEEE Semiannual, 2:1469– 1473, 2003.

[15] P. Karn. MACA-a new channel access method for packet radio. In 9th Computer

Networking Conference on ARRL/CRRL Ameture Radio, pages 134–140, 1990.

[16] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. MACAW: A

media access protocol for wireless lan’s. In ACM SIGCOMM ’94, pages 212–225,

1994.

[17] Ashikur Rahman and Pawel Gburzynski. Hidden problems with the hidden node

problem. In 23rd Biennial Symposium on Communications- QBSC 2006, pages

270–273, 2006.

	Declaration of Authorship
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Communication and Networks
	1.1.1 Wireless Network
	1.1.2 Wirelss Ad-Hoc Network

	1.2 Motivation and Our Contribution

	2 Background
	2.1 Ad Hoc Wireless Network
	2.1.1 Cellular and Ad Hoc Wireless Networks
	2.1.2 Application of Ad Hoc Wireless Networks
	2.1.3 Issues in Wireless Ad Hoc Networks

	2.2 Medium Access Control Protocols for Ad Hoc Wireless Networks
	2.2.1 Issues in Designing MAC Protocol for Ad Hoc Wireless Network
	2.2.2 Design Goals of a MAC Protocol for Wireless Ad Hoc Network
	2.2.3 Classifications of MAC protocols

	2.3 IEEE 802.11 Standard
	2.3.1 802.11 MAC Layer

	2.4 Tunable Parameters of IEEE 802.11
	2.5 Past Works
	2.5.1 Related Works

	3 Tuning RTS-Threshold
	3.1 Related Terms Used with RTS-Threshold
	3.1.1 Hidden Terminal Problem
	3.1.2 Exposed Teminal problem

	3.2 Advantages of RTS-CTS mechanism
	3.3 Disadvantages of RTS-CTS mechanism
	3.4 Disadvantages of Using Fixed Value of RTS-Threshold
	3.5 The Relative Definition of Small
	3.6 The Algorithm

	4 Validation by Simulation
	4.1 Network Simulator 2
	4.2 Experimental Setup
	4.3 Performance Metrics
	4.4 Scenario Generation
	4.5 Traffic Generation
	4.6 Experimental Results

	5 Conclusion and Future Works
	A NS2 The Network Simulator
	A.1 What is NS2
	A.2 Installing NS2
	A.3 Set Path
	A.4 Validation
	A.5 Scenario Generation
	A.6 CBR Traffic Generation
	A.7 Writing Simulation Generation File
	A.8 Trace Generation
	A.9 Trace Analysis
	A.10 Links to related sites

	B Codes Modified
	B.1 Mac Layer Modification
	B.1.1 File mac-802_11.h
	B.1.2 File mac-802_11.cc

	B.2 Linking TCL variables to C++
	B.3 Random Packet Densities in Traffic
	B.4 Parameters in TCL
	B.5 Static Network Generation

	C IEEE 802.11 MAC in NS2
	C.1 Class States
	C.2 Important Functions
	C.2.1 recv()
	C.2.2 sendDATA()
	C.2.3 sendRTS()
	C.2.4 sendACK()
	C.2.5 deferHandler()
	C.2.6 check_pktRTS()
	C.2.7 check_pktTX()
	C.2.8 transmit()
	C.2.9 send_timer()
	C.2.10 RetransmitData()
	C.2.11 tx_resume()
	C.2.12 collision()
	C.2.13 recv_timer()
	C.2.14 recvCTS()
	C.2.15 recvACK()
	C.2.16 rx_resume()
	C.2.17 backoffHandler()
	C.2.18 Miscellaneous Functions

	C.3 Timers
	C.4 Flow of Transmission
	C.4.1 Successfull Transmission
	C.4.2 RTS RE-Transmission
	C.4.3 Data RE-Transmission

	D GNUPlot
	D.1 Description

	Bibliography

