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Abstract—Trading off computational complexity and quality
is an important performance constraint for real time application
of motion estimation algorithm. Previously, the novel concept of
a distance-dependent thresholding search (DTS) was introduced
for performance scalable motion estimation in video coding
applications. This encompassed the full search as well as other
fast searching techniques, such as the three-step search, with
different threshold settings providing various quality-of-service
levels in terms of processing speed and predicted image quality.
The main drawback of the DTS was that the threshold values
had to be manually defined. In this paper, the DTS algorithm has
been extended to a fast and fully adaptive DTS (FADTS), a key
feature of which is the automatic adaptation of the threshold using
a desired target and the content from the actual video sequence,
to achieve either a guaranteed level of quality or processing
complexity. Experimental results confirm the performance of the
FADTS algorithm in achieving this objective by demonstrating
either comparable or improved search speed over existing fast
algorithms including the diamond search, hexagon-based search,
and enhanced hexagon-based search, while maintaining similar
error performance.

Index Terms—Adaptive algorithms, block motion estimation,
distance-dependent thresholding, scalable motion estimation,
video coding.

I. INTRODUCTION

MOTION estimation (ME) plays a vital role in video
coding standards, such as MPEG-1/2 [1], [2] and

H.261/3/4 [3]–[5], in exploiting temporal redundancy in video
sequences. Most ME techniques use block matching algorithms
(BMA) to compute motion vectors(MVs). The most straight-
forward method of obtaining a MV is to search all possible
locations within a given search area. Since this method, known
as full search (FS), uses an exhaustive search to locate the
minimum block-distortion measure (BDM) for each candidate
block, it provides optimal performance, but at the expense of
very high computation. It is for this reason that FS is not used
in real-time systems. Indeed ME is the major bottleneck in
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real-time video coding applications, hence the need for faster
algorithms.

A number of fast block ME algorithms have been proposed to
lower the computation complexity, for example, the 2-D loga-
rithmic search (2DLOG) [6], the three-step search (TSS) [7], the
new three-step search (NTSS) [8], the advanced center biased
search [9], the four-step search (FSS) [10], the cross-search [11],
the prediction search [12], the diamond search (DS) [13], and
the hexagon-based search (HEXBS) [14], [15]. The DS algo-
rithm has achieved a significant speed gain by considering dia-
mond-shaped search patterns instead of the conventional square
ones with a view to approximate the optimal (but unrealizable)
circular shape as closely as possible. Recently, the HEXBS al-
gorithm has surpassed the speed of DS by using a better approx-
imation with hexagon-shaped search patterns. All of these fast
algorithms assume that either the error surface is unimodal over
the entire search area (i.e., there is only one global minimum) or
the MV is center-biased. These assumptions essentially require
that either the BDM increases monotonically as the search point
moves away from the global minimum position or the MV ex-
ists in a small range. These assumptions are reasonable for cer-
tain applications e.g., in video-conferencing, where the motion
is neither very fast nor complicated. However, they are gener-
ally invalid for many real video sequences because of the highly
nonstationary characteristics of the video signal. Moreover, the
search directions of these algorithms can be ambiguous, leading
to the MV becoming entrapped in a local minimum with a re-
sulting degradation in predictive performance.

Despite their respective differences, these fast search algo-
rithms (as well as FS) all have one common feature that none
of them has been designed to provide flexibility in controlling
the performance in terms of predicted picture quality and pro-
cessing time (speed). They do not allow any performance scal-
ability in ME; they no facility to trade system parameters de-
pending upon a particular application, or to preset a user-de-
fined level of quality of service (QoS) in terms of predicted pic-
ture quality or computational complexity. Such a feature would
be very advantageous in facilitating complexity management in
video coding, especially in real-time software-only low bit rate
video CODECs (Coder and Decoder) [16] or low-power video
CODECs for mobile or hand-held computing platforms which
particularly require a more flexible tradeoff between complexity
and quality [17].

It has been observed that the distortion of an object in a video
frame increases with its velocity as well as the zoom and pan fac-
tors of the camera. Thus, as the length of the MV grows, so does
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the distortion error. Based on this tenet, it can be concluded that
locating a block with the minimum prediction error but with a
MV of high magnitude, is not only ineffectual in the prevailing
distorted search space, but will inevitably lead to many false
MVs being erroneously selected. Designing a new BMA that
seeks to exploit this feature can provide a variable threshold in
the search process, which increases as the search expands out-
wards, will enable the user to restrict the search boundary so that
it can be used as an effective control parameter for performance
scalability and QoS in terms of predicted image quality as well
as processing time in ME.

This paper addresses this matter by proposing a novel fully
adaptive distance-dependent thresholding search (FADTS)
algorithm by introducing the concept of distance-dependent
thresholding search (DTS) for fast and performance manage-
ment ME in video coding applications. The unique feature of
this algorithm is that it can dynamically adjust the threshold
to achieve any level of service required in terms of both
quality and processing speed. This means for example, that a
higher (lower) error or speed can be achieved by automatically
adapting the threshold to a correspondingly level, depending on
video content so providing the potential for performance scal-
able ME for real-time software only video coding application.
A preliminary version of this work has been presented in [18]
where threshold values are defined manually.

The paper is organized as follows. The original distance-de-
pendent thresholding (DTS) algorithm along with its motivation
is discussed in Section II. Section III details the novel fully
adaptive DTS (FADTS) algorithm, including some enhance-
ment to DTS. Computational complexity associated with
FADTS is analysed in Section IV, while Section V includes
both experimental results and analysis of the performance of
FADTS for various levels of quality and speed. Section VI
presents some conclusions.

II. DISTANCE-DEPENDENT THRESHOLDING SEARCH (DTS)
ALGORITHM

In introduction, it was shown that many contributions in the
domain of block-matching algorithms are based on the principle
of reducing the checking points in a search window under uni-
modal error surface assumption. If a BDM is monotonic along
any direction away from the optimal point, a well-designed fast
algorithm can then be guaranteed to converge to the global op-
timal point. According to Chow and Liou [19], however, this
assumption does not hold true for real world video sequences.
Fig. 1 shows a typical mean absolute error (MAE) per pixel sur-
face of Football sequence for a search window of pixels,
which has many local minima due to the nonstationary charac-
teristics of the video signal. As a consequence, it is unlikely that
conventional fast search algorithms, which use few directional
candidates, would ever converge to the global minima. A nondi-
rectional search, such as the FS algorithm, can always guarantee
reaching the global minima on any kind of error surface at the
at the expense of a large number of search points.

Definition 1 (Search Squares ): The search space with
maximum displacement , centerd at pixel , can be
divided into mutually exclusive concentric search

Fig. 1. MAE per pixel surface of Football sequence, current frame #35, refer-
ence frame #34, block coordinate (10,9), block size 16� 16 pixels, maximum
search displacement 16.

Fig. 2. DTS search squares SS , SS , and SS .

squares , such that a checking point at pixel , rep-
resenting MV , is in if and only if

, for all ,
, and .

It can be readily verified that the number of checking points
in search square is

;
(1)

and represents the MVs of length in the range of .
The checking points used in the first three search squares are
shown in Fig. 2.

Now consider the average MAE per pixel of a macroblock
used as the BDM in the FS algorithm. For each macroblock, the
FS algorithm looks for the minimum MAE per pixel value in the
range of for a -bit gray scale image. In [20] and [21],
it was stated that the magnitude of a MV is proportional to the
magnitude of the BDM. This observation has been explored fur-
ther on a number of standard and nonstandard video sequences
covering a wide range of object and camera motions. Cumula-
tive probabilities of the minimum MAE per pixel for different
search squares, using block size of 16 16 pixels, on the first 80
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Fig. 3. Cumulative probabilities of the minimum MAE per pixel for the first
four search squares on the first 80 frames of Football sequence using block size
of 16� 16 pixels.

frames of Football sequence are plotted in Fig. 3, which reveals
the following:

• the cumulative probability of having a particular minimum
MAE decreases as the MV length increases;

• the minimum MAE, in which the cumulative probability
first reaches the value 1, increases as the MV length in-
creases.

Both these findings were observed for all standard test se-
quences using three different block sizes 16 16, 8 8, and
4 4 pixels to postulate that the probability of terminating the
FS algorithm at a higher MAE value increases with the length
of the MV.

Based on these observations, the key finding is that the dis-
tortion of an object in a video frame increases with its velocity,
as well as with the zoom and pan factors of the camera. As the
length of the MV grows, so does the distortion error. It can be,
therefore, concluded that locating a block with a minimum pre-
diction error but with a MV of high length, is not only inef-
fectual in the prevailing distorted search space, but may lead to
false MVs being erroneously selected.

A. Formal DTS Algorithm

Like all block-base ME search techniques, the DTS algorithm
starts at the center of the search space. The search then pro-
gresses outwards by using search squares in order while
monitoring the current minimum MAE. A parametric thresh-
olding function, , is used to determine the var-
ious thresholds to be used in the search involving each
where the parameter is set at the start of each search and acts
as a control parameter. After searching each , the current
minimum MAE is compared against the threshold value of that
specific search square and the search is terminated if this MAE
value is not higher than that threshold value. The DTS algo-
rithm is formally presented in Fig. 4 where
denotes the MAE per pixel of the macroblock centerd at pixel

in the current frame with respect to the block centerd at
pixel in the reference frame.

Fig. 4. DTS algorithm.

B. Characteristics of the Thresholding Function

To make sure that the DTS algorithm can be transformed to
an exhaustive FS algorithm, the threshold value for is al-
ways assumed to be 0. As the maximum MAE value using a
-bit gray level intensity is , threshold values for all other

search squares can, at most be . However, to ensure the
algorithm includes the entire search space, all but the outermost
threshold value must be less than . Moreover, to make
the thresholding function distance-dependent, the function must
monotonically increase. The DTS algorithm, therefore, assumes
the following general properties of the thresholding function:

(2)
Parameter plays a significant role in the DTS algorithm by al-
lowing users to define different sets of monotonically increasing
threshold values based on specific values of . Obviously a set
of larger threshold values terminates a search earlier than a set
of smaller values. therefore, provides a control mechanism
to allow trading off between the computational complexity in
terms of search points and prediction image quality.

The monotonic increasing function requirement means the
DTS algorithm could use a linear, exponential, or any other
complex analytic function to control the threshold with . In
[18], the authors empirically observed linear thresholding func-
tion within the DTS algorithm outperforming and providing a
wider range of flexibility compared to exponential thresholding
function. This paper, therefore, has considered only linear
thresholding function, which is defined as follows:

for all (3)
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The subscript in specifies linear thresholding. It can be
verified that the above definition satisfies all the conditions in
(2) if and . So, parameter can take
any value from the range given below

(4)

C. Selecting the Thresholding Control Parameter

The choice of involves a tradeoff between the quality of
the ME and the computational complexity. When in
(3), the search terminating threshold value of any search square
is zero. In this case, the DTS algorithm translates into the ex-
haustive FS algorithm as there is no threshold to terminate the
search until all possible locations in the search space have been
visited. Note that the search can still terminate earlier as soon
as a search point with MSE per pixel of zero is reached. Had
the search continued with the remaining search points, however,
the resultant MV would remain the same as between two vec-
tors with the same distortion, the shorter one is preferred. Con-
versely, when is set to the maximum value, for an 8-bit gray
level image and the maximum integer value of is 36,
the DTS algorithm will be as fast as the probability of getting the
minimum BDM within the search terminating threshold limit is
high, especially around the search center. In the case of low mo-
tion video sequences, such as Salesman where MV distribution
is center-biased, a high performs well with low computa-
tional overhead. Conversely, for high motion video sequences
like Football and Flower Garden where MV distribution is not
center-biased, a high may stop the search with an inaccurate
MV and generate a high prediction error.

Finally, while linear thresholding means that different levels
of QoS can be achieved by trading off between predicted image
quality and computational complexity, in terms of search points,
automatically selecting the best value of is a challenging
problem that will be addressed in next section.

III. FULLY ADAPTIVE DTS (FADTS) ALGORITHM

In performance-management ME, given a target prediction
image quality in terms of average mean squared error (MSE)
per pixel, the motion search algorithm tries to achieve it using
as few search checking points as possible. Inversely, if a target
processing speed is set in terms of average number of search
point (SP) used per MV, the algorithm tries to achieve with as
low MSE as possible. Performance-management ME also as-
sumes real time constraint, which allows very limited number
of passes per macroblock. Without such a constraint, trivial trial
and error technique with a very high number of passes would
suffice the adaptation. Without any loss of generality, this paper
assumes the strictest constraint where only one ME pass is per-
formed per macroblock. To leverage the adaptation technique,
the original DTS algorithm is enhanced further.

A. Enhancing the DTS Algorithm

The concept of DTS is not linked to any specific search pat-
tern shape. In the wake of improved speed gain by nonsquare

Fig. 5. DTS search diamonds SD , SD , and SD .

search patterns, DTS has been implemented using search dia-
monds as shown in Fig. 5 where the number of checking
points in is

;
(5)

and represents the MV of length in the range of .
Note that for , some of the checking
points in the search diamond fall outside the search windows
that are obviously ignored. Using fewer checking points for
center-biased as well as horizontal and vertical MVs (prevalent
in panning) makes DTS with search diamond superior to using
search squares as observed with all the standard test sequences.

Well-established spatio-temporal motion correlation among
the neighboring macroblocks [22]–[24] can be exploited to re-
duce the search point even further by using a predicted search
origin rather than always using the center of the search window.
Assuming row-major processing order, the search origin of mac-
roblock at th block row and th block column is calculated from
the mean of the MVs of already processed neighboring mac-
roblocks at th block row and th block column,

th block row and th block column, th block row
and th block column, and th block row and th
block column. If the magnitude of the difference between this
mean vector with each of the four neighboring MV is within
a predefined threshold , the search origin at the center is
moved by that mean vector. DTS using predicted search origin
has performed superior to the original DTS for all the standard
test sequences. Experimental results have also confirmed that
the value of is not very sensitive to performance, espe-
cially for prediction error. Using the threshold in the range from
3 to 7, the average MSE and the average number of search points
of the first 50 frames of Football and Flower Garden sequences
varied less than 1% and 5%, respectively, so to ensure average
performance is defined in experiments.

B. FADTS Closed-Loop Adaptation Model

The DTS algorithm works sequentially on frames of an input
video sequence. Although consecutive frames are considered to
be highly correlated, the input video signal can be considered
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Fig. 6. Closed-loop adaptation process for the FADTS algorithm.

time variable or nonstationary from the adaptation point of view.
Therefore, a closed-loop adaptation model is presented for the
FADTS algorithm, as shown in Fig. 6. The model has the fol-
lowing three modules.

• ME: This module calculates MVs using the enhanced DTS
algorithm. The input of the module at iteration are the
video frame pair and the control parameter . The
output of the model can be either prediction image quality
in terms of average MSE or speed in terms of average
number of SP as selected by the user. The output at iter-
ation can be expressed as

(6)

where is a monotonically increasing or decreasing func-
tion of (under stationary ), if the output is MSE or SP,
respectively.

• Performance calculation: This module calculates the per-
formance of the adaptive system by calculating the error
signal as

(7)

at each iteration where

(8)

The value of must be minimized as the adaptation process
progresses.

• Adaptation of : This module updates the value of
for the next iteration as

(9a)

if the output is MSE or as

(9b)

if the output is SP where can be any linear or nonlinear
function.

The performance of an adaptive system largely depends on
how the function is defined. A few gradient search al-
gorithms [25]–[29] exist that can adapt a system in searching for
the optimal parameter to minimize error signal in (7). Among

these, the least mean square (LMS) is the most well-known
and popular method for its computational simplicity, robust-
ness, and relatively easy implementation for online estimation
of time-varying system parameters. A number of variants on
the LMS theme have been conceived in order to ratify poten-
tial problems of the original LMS algorithm such as the need
to guess the best value of step size, slow convergence, and nu-
merical instability. The normalized block LMS (NBLMS) [29]
is considered as the best option for automatically adjusting the
control parameter in order to achieve a target average MSE
or average SP while coding a video sequence, where this se-
quence can be considered as a time varying nonstationary input
to the adaptation system. Based on NBLMS, the threshold con-
trol parameter is updated as

(10a)

if the output is average MSE or as

(10b)

if the output is the average SP where

(11)

C. Formal FADTS Algorithm

The FADTS algorithm utilizing the NBLMS algorithm
for adapting the control parameter , in order to achieve a
target predicted image quality is now outlined as follows. The
algorithm applies the enhanced DTS algorithm on a block of

-frames of the video sequence using the same value for
ME. The is initialized to an initial value for the first
block of -frames and the value of is then updated for the
next block of -frames by (10a) using the average output MSE
and the total energy of all output MSE of the ME carried out
so far on the current block of -frames. Fig. 7 presents the
complete FADTS algorithm.

The flexibility of the FADTS algorithm is illustrated by the
fact that it is capable of adapting the ME in order to achieve
a target prediction image quality in terms of the average MSE
output by trading off search speed in terms of average number
of search points. However, the same algorithm can easily be
transformed for adapting the ME with a target search speed in
terms of average SP while trading off prediction image quality
by incorporating the following minimal changes:

• the number of average SP is used as the target ;
• the output is the average SP for ME between iterations

and ;
• the updating factor in the adaptation of is negative as

in (10b) instead of positive as in (10a).
Based on the aforementioned adaptive model, the perfor-

mance of the adaptive algorithms depends on the appropriate
selection of the initial threshold constant , the step size

, and block length . Each of these is now briefly explored.
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Fig. 7. FADTS algorithm.

D. Initialization of

Generally, adaptive algorithms start by setting the initial
weight vector (in this case, the value of ) to zero. Although
in the case of a large number of iteration cycles its impact
may be negligible, the performance of adaptive algorithms
with relatively fewer iteration cycles depends heavily on the
initial value of its weight. Once shot detection is incorporated
in the FADTS algorithm, the number of iterations based on an
initialization of depends on the number of frames in each
shot, which again depends on the visual content and editorial
decisions. However, after studying a large number of standard
and nonstandard video sequences, it can be fairly concluded
that the average number of frames in a shot is not large enough
to consider it as nullifying the impact of initializing to zero.
Thus, the choice of the initial value of impacts significantly
on the performance of the FADTS algorithm for ME. Based
on empirical data, the initial value of , i.e., , has been
determined for quality and speed in the following two sections.

1) Initialization for Quality Adaptation: From (4), for
an 8-bit gray level image and , the maximum integer
value of is 36. Experimental results in Fig. 8 on standard test
sequences have revealed that above a certain limit, , the
speed variation was insignificant, so that the upper limit of the
threshold control parameter can be defined as 25 instead
of 36. Similarly, though the minimum value of (FS case)
in the DTS algorithm, experimental results have also showed

provided almost the same prediction quality as the FS
algorithm. Therefore, the lower limit of the threshold control
parameter is defined.

The prediction error (quality) variation in terms of the average
MSE per pixel using different values of is significant for all

Fig. 8. Quality-speed performance of DTS for different standard video
sequences with threshold control parameter C settings 0, 1, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 25, 30, and 36.

Fig. 9. Average MSE per pixel on the first 80 frames of Football and Flower
Garden sequences for different values of C .

motion sequences as evident in Fig. 9. It is also shown that al-
though prediction error variation with different values of is
not exactly linear, it can be approximated as so. Based on this
premise, for a particular sequence is automatically com-
puted from information in the first few frames of the sequence
as follows.

• Compute the minimum prediction error be-
tween frames #1 and #2 of the current scene using .

• Compute the maximum prediction error be-
tween frames #2 and #3 of the current scene using .

• Compute for the next -frames of that scene as

(12)

where is the target prediction quality (in this instance,
the average MSE).

2) Initialization for Search Point Adaptation: Fig. 10
shows the computational cost in terms of the average number
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Fig. 10. Average search points per MV on the first 80 frames of Football and
Flower Garden sequences for different values of C .

Fig. 11. Logarithm of average search points per MV on the first 80 frames of
Football and Flower Garden sequences for different values of C .

of search points per MV for some standard high motion video
sequences with different values of . If a logarithmic scale is
used for search points, the characteristic curve can be converted
into a linear approximation as shown in Fig. 11. Using the same
procedure described in the previous section, can be cal-
culated as

(13)

where and are the maximum and minimum
search points obtained for and , respectively, and

is the target speed (in this instance, the average SP).

E. Block Length

Table I shows the performance of the FADTS algorithm
with different values of for Football, Flower Garden, and
Salesman sequences with average 390, 280, and 16 MSE as the
target errors, respectively. It can be observed that the FADTS

TABLE I
PERFORMANCE COMPARISON OF FADTS AALGORITHM WITH DIFFERENT

VALUES OF K

algorithm has obtained an output average MSE closer to the
target MSE with a comparatively fewer number of search
points, when the block length for all cases. Although
a lower value of also provided similar performance in sat-
isfying the targets, according to (10), it increases the overhead
computational cost for the adaptation process. Conversely, a
higher value of can be considered in order to reduce the
overhead cost, though the block length of in the NBLMS
algorithm cannot be too high if it is assumed that the content
of a video sequence may be unstable. Based on this assumption
and the experimental results, a value of was defined for
all experiments.

F. Step Size

With regard to this parameter, Meghriche et al. [30] high-
lighted that there is no universal solution for finding the optimal
value of . In [29], the NLMS algorithm considers a step size
range of for signal processing applications. The
lower the value of , the slower the convergence rate; while a
high step size can lead to system instability. The impact of is
not constant as the variable step size also depends on the error
signal . If becomes large, then a greater step size is consid-
ered for the next iteration to speedily move towards the target
level, while if it is low, the step size will be smaller in order
to follow the target line. Moreover, the ceiling
enforces a dampening effect, which avoids any instability even
when is chosen. The value of was defined for all
the various standard video sequences tested, with no instability
encountered for the FADTS algorithm.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS OF FADTS

Consider a ME system with the following parame-
ters: frame size pixels, macroblock size

pixels, maximum MV displacement , and
frame rate fps. If there are number of operations
required for the BDM calculation of one search checking
point, then the FS algorithm requires a maximum
operations per second using integer-pel accuracy where

is the total number of macroblocks processed
per second. The DTS algorithm requires extra operations
to compare the current minimum BDM with the predefined
threshold of each search square, for each macrboblock, while
searching the entire search window. The total number of extra
operations required per second is thus so the upper compu-
tational bound of the DTS algorithm is

(14)

operations per second.
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Conversely, by using a very high threshold value, when only
the corresponding center of the search space is checked and
only one operation is required to compare the BDM found at the
search center with a predefined threshold for each macroblock.
So, the upper computational bound of the DTS algorithm is

(15)

operations per second.
When half-pel accuracy is used for ME, eight neighboring

half-pel positions around the current minimum point obtained
with integer-pel accuracy are checked. In this case, the upper
and lower bounds of computational complexity of the DTS al-
gorithm are increased by operations per second. While en-
hancement of DTS due to diamond shape patterns does not alter
the value of and , enhancement due to prediction uses
an extra operations per macroblock, i.e., an extra

operations per second.
Now consider the FADTS algorithm in Fig. 7. The outer loop

in step 2 and the inner loop in step 4 iterates for and
times, respectively. If all basic arithmetic operations and as-

signment are considered equivalent in terms of processing time,
steps 1, 3, 6, 7, 9, and 10 take , 2, 2, 3, 3, and opera-
tions, respectively. So, for processing a video of -frames, the
FADTS algorithm makes operations, i.e.,

(16)

operations per second, in addition to the enhanced DTS algo-
rithm.

Now consider performance-management ME for a typical
CIF video sequence with , , ,

, , and . Assuming the BDM is mea-
sured using MAE, since is defined for the FADTS algo-
rithm, , , and can be estimated using (14)–(16)
as 1.22 billion, 5.45 million, and 259 operations per second, re-
spectively. The gap of with and will widen
even further when half-pel accuracy and prediction enhance-
ment are considered.

In summary, therefore, the FADTS algorithm consumes neg-
ligible computational overhead compared to the BDM calcula-
tion in DTS algorithm, while providing significant performance
benefits including user-definability of key parameters by em-
ploying an adaptive thresholding process.

V. EXPERIMENTAL ANALYSIS OF THE FADTS ALGORITHM

Although FADTS is the first proposed performance-manage-
ment adaptive ME search algorithm, its performance is com-
pared against the existing fast algorithms in terms of quality-
speed measurement where quality and speed are measured as
MSE per pixel and SP per MV, respectively. While the TSS and
NTSS algorithms are well established, the principles of more
recent DS and HEXBS algorithms are now briefly described.
The DS algorithm uses diamond shape patterns of nine and five
search checking points as shown in Fig. 12. The search starts
at the origin with the larger diamond pattern and in successive
steps moves the origin to the point with the lowest BDM until

Fig. 12. DS search steps.

Fig. 13. HEXBS search steps.

the origin cannot be moved when the smaller diamond is used
to complete the search. This algorithm uses nine and four new
search points at the start and end and either three or five new
search points at the intermediate steps depending on the direc-
tion of the move. The HEXBS algorithm has enhanced the DS
algorithm by using hexagonal patterns of seven and five search
checking points as shown in Fig. 13. A considerable speed gain
is achieved as it uses seven and four new search points at the
start and end, respectively, but only three search points in the
intermediate steps irrespective of the direction of the move. The
number of search points at the end is further reduced in the en-
hanced HEXBS (EHEXBS) [15] algorithm by grouping the six
points comprising the last hexagon into six groups (pairs) and
then using just two or three of the eight unsearched points having
the minimum average BDM which are nearest to the group.

The experimental setup is as follows. For all search algo-
rithms, MAE as the BDM, block size of 16 16 pixels, and
maximum search displacement of 7 pixels were used. Al-
though six standard video sequences Football (320 240 pixels,
345 frames), Flower Garden (352 240 pixels, 150 frames),
Salesman (352 288 pixels, 150 frames), Miss America
(176 144 pixels, 150 frames), Tennis (352 240 pixels,
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TABLE II
AVERAGE MSE PER PIXEL AND SP PER MV OF THE FS, TSS, NTSS,

DS, HEXBS, AND EHEXBS ALGORITHMS FOR FOOTBALL AND

FLOWER GARDEN VIDEO SEQUENCES

150 frames), and Foreman (176 144 pixels, 298 frames) were
used and FADTS performed well for all of them, results of the
two most challenging sequences, Football and Flower Garden
with heavy object motion and camera panning, respectively, in
relation to performance-management adaptation are presented
in this section. ME has been carried out on the luminance
component values only with each pixel representing an 8-bit
grayscale intensity.

To isolate improvement due to motion search technique only,
ME was carried out differently than is done for video coding so
that any influence of R-D optimization [31] and error propaga-
tion can be avoided. For each pair of successive frames, motion
was estimated for the second frame using the original version
of the first frame (not the motion compensated version of that
frame as is used for video coding) as the reference and MSE
per pixel was averaged using the first frame and the motion
compensated second frame. As no entropy coding was used to
compress the residual, this MSE measure was higher than what
could be achieved by a video coder with residual encoding.
However, this MSE measure correlates highly with residual
compression and thus still represents quality of the image, if
R-D tradeoff is factored in. The values of and
were used with the FADTS algorithm where threshold control
parameter was initialized accordingly using (12) or (13). All the
search algorithms were enhanced by 1) predicting the search
origin using the spatio-temporal motion correlation among
neighboring blocks as explained in Section III-A
and 2) refining MVs with half-pel accuracy using additional
eight neighboring half-pel search points (with interpolated
intensity values) around the current minimum point obtained
with integer-pel accuracy.

Average MSE per pixel values and average search point num-
bers per MV for different nonadaptive algorithms are summa-
rized in Table II. While FS achieves the maximum quality with
the minimum average MSE per pixel for each sequence, the
speed gain of DS and HEXBS over TSS is clearly evident.

The performance of the FADTS algorithm was tested and
evaluated for quality and speed adaptation as follows.

A. Quality Adaptation

The performance of the FADTS algorithm for quality adap-
tation is presented in Tables III and IV for a number of different
MSE per pixel target values for Football and Flower Garden se-
quences, respectively. It can be seen that the FADTS algorithm

TABLE III
QUALITY ADAPTATION FOR FOOTBALL VIDEO SEQUENCE

TABLE IV
PREDICTION ERROR ADAPTATION FOR FLOWER GARDEN VIDEO SEQUENCE

achieved all targets within 1% of disgreement. For example,
targets were set to estimate motion with an average MSE of 230
per pixel or image quality of 24.51 dB peak signal-to-noise raio
(PSNR) for Football sequence and on average MSE of 215 per
pixel or image quality of 24.81 dB PSNR for Flower Garden
sequence. The FADTS algorithm satisfied these demands with
MSE of 232.04 and 214.41 per pixel using on average 49.18
and 24.54 search points, respectively. The disagreement of these
two cases are and

, respectively. These settings reveal that
the FADTS algorithm is able to reach any bounded target level
of quality, with the implicit assumption that the minimum target
error obtained by FS is the lower bound.

Adaptive values of threshold control parameter , for dif-
ferent frames of Football and Flower Garden video sequences
with target set as MSE of 240 and 215 per pixel, respectively are
plotted in Fig. 14. The adaptive nature of the FADTS algorithm
is clearly evident for varying content between different frames.
It also indicates that the FADTS algorithm automatically com-
puted a starting value for , 14 for Football and 7 for Flower
Garden, based on both the content of the video sequence and
the desired target.

B. Search Point Adaptation

The performance of the FADTS algorithm for computational
scalability in terms of the average number of search points
per MV was tested with a number of targets. Tables V and
VI show some of these targets and the actual values obtained
by the FADTS algorithm for Football and Flower Garden
video sequences, respectively. Again, it can be seen that the
FADTS algorithm achieved all targets within 1% of dis-
agreement. For example, targets were set to estimate motion
with on average 20 SP for Football sequence and 25 SP for
Flower Garden sequence. The FADTS algorithm satisfied these
demands using 20.10 and 24.69 search points with average
MSE of 243.00 and 214.85 per pixel, respectively. The dis-
agreement in these two cases is and

, respectively. These settings reveal
that the FADTS algorithm is able to reach any bounded target
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Fig. 14. Threshold control parameter adaptation for (a) Football sequence with
quality target of 240 MSE per pixel and (b) Flower Garden sequence with
quality target of 215 MSE per pixel.

TABLE V
SPEED ADAPTATION FOR FOOTBALL VIDEO SEQUENCE

TABLE VI
SPEED ADAPTATION FOR FLOWER GARDEN VIDEO SEQUENCE

level of speed, with the implicit assumption that the number of
search points used by FS is the upper bound.

Fig. 15. Quality-speed performance of the TSS, DS, HEXBS, EHEXBS, and
FADTS algorithms for (a) Football and (b) Flower Garden video sequences.
The labels on the FADTS performance curves indicate the target values used.

C. Quality-Speed Performance

As has been clarified in Section III, the aim of a perfor-
mance-management algorithm is to achieve a target image
quality (speed) using as few search points (as low MSE) as
possible. Whether FADTS can fulfil this objective optimally
is an intractable problem, so instead the quality-speed perfor-
mance of the FADTS algorithm is compared against existing
fast algorithms to verify whether FADTS could match the
performance of these fast algorithms in terms of quality (speed)
for a prescribed target speed (quality). Fig. 15 plots the various
quality-speed performance curves for the FADTS algorithm
applying the data from Tables III–VI for both quality and speed
adaptations together with the individual performance points
for the TSS, NTSS, DS, HEXBS, and EHEXBS algorithms
using the data in Table II. For the Football sequence Fig. 15(a),
while FADTS outperformed TSS and NTSS in terms of both
quality and speed adaptations, its performance is comparable
to DS, HEXBS, and EHEXBS. Conversely, for the Flower
Garden sequence Fig. 15(b), FADTS maintained the same
performance as NTSS and provided superior results over all
other fast algorithms for both adaptations.

In summary, therefore, the FADTS algorithm can adapt the
threshold control parameter satisfactorily to achieve 1) any
target quality without using any more search points per MV
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and 2) any target speed with no higher MSE per pixel than
the existing fast algorithms. The main strength of the FADTS
algorithm lies in its unique performance scalability. No other
existing fast directional algorithm provides such a level of
flexibility in trading off predicted image quality and computa-
tional complexity, whereas the FADTS algorithm demonstrates
considerable flexibility in providing target-driven services,
especially in terms of computational complexity.

If rate-distortion (RD) optimization technique [31] is em-
bedded into a motion search algorithm, longer MVs are less
likely to be selected as they incur more bits to encode. Fig. 15 re-
veals that FADTS used on average no more than 25 search points
per MV to achieve the target MSE per pixel compared with the
DS or HEXBS algorithms, so it can be reasonably concluded
that majority of the MVs selected by FADTS were bounded by
the search diamond with MVs being no longer than three
pixels, which is in fact less than one third of the maximum fea-
sible length of pixels. While DS and HEXBS used
a similar number of search points, being directional no similar
conclusion can be drawn on the length of their MVs, so RD op-
timization will, therefore, affect FADTS no more than it does
affect DS and HEXBS.

VI. CONCLUSION

This paper has presented a novel FADTS algorithm based
on NBLMS adaptive algorithm for performance-management
block-based ME in real-time video coding applications. A key
feature of this approach is the progressive adjustment of the
required threshold control parameter via an adaptive process
which uses the information from previous frames to achieve
specified prediction quality and processing speed. The perfor-
mance of the FADTS algorithm has been examined, and proof
that it affords a unique feature in being able to tradeoff between
two key model parameters, namely prediction quality and search
speed, for the entire range of values of the threshold control pa-
rameter. Experimental results have shown that the FADTS al-
gorithm has achieved guaranteed QoS demands, with perfor-
mance scalability, particularly complexity scalability being in-
herent in the algorithm, and thereby representing an effective
solution to the problem of performance scalability in real-time
software-only or low power video coding applications.

The search efficiency of the FADTS algorithm has also been
compared to other popular fast algorithms notably the superior
diamond and hexagon-based search algorithms. Experimental
results have proven that the FADTS algorithm is not only able to
provide QoS but also demonstrates comparable or faster search
speed for similar error performance and vice versa, thus ad-
dressing the problem of existing fast directional algorithms in
providing different levels of quality of service.
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